Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing Quantum Dots

10.09.2002


Now physicists need not fully control the growth of laser crystals, because the crystals grow themselves. Professor Nikolay Ledentsov and his team at the Ioffe Physico-Technical Institute have learned how to provide special conditions in which crystals can grow defectless.



Growing crystals with enhanced characteristics is possible on the basis of the effect of quantum dots. A quantum dot is a tiny islet of one material lost in the monocrystal of the other material. For a long time the scientists thought that it is impossible to grow a perfect crystal with "raisins" of other material inside. However, researchers at the laboratory of Zhores Alferov have proved that the grown crystals are good for lasers.

Technology of growing is very important. Usually heterostructural materials, e.g. consisted of gallium arsenid and indium arsenid, are made by placing a layer by layer. Now the researchers can do without this laborious procedure. According to professor Ledentsov it is enough to choose right conditions: temperature, deposition rates, ratios between atom flows etc. In this case a perfect material will grow and the "raisins" will arrange in a strict order. Having known regularities of the growth, it is possible to make beads, chains, "saucers", small or big islands of quantum dots etc.


The physicists believe that the lasers on quantum dots will be widely used in industry. For example, plates for most common lasers with a wavelength of 1.3 - 1.55 micron will be grown in this way. Using self-arrangement, the scientists have made a crystal for vertical laser with a wavelength of 1.3 micron, which is a key device for telecommunications. In this laser light goes upwards. The vertical laser works as a LED (light emitting diode) with a perfect spectral quality, narrow directional diagram and high efficiency. A similar vertical laser can be made in ultraviolet range, which is used for optical recording.

Tatiana Pitchugina | Informnauka
Further information:
http://www.informnauka.ru/eng/2002/2002-08-16-02_195_e.htm

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>