Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The CEBAF Large Acceptance Spectrometer (CLAS) delves into secrets of particle’s structure

09.09.2002


Jefferson Lab researchers utilize CLAS and CEBAF’s 5.7 GeV continuous beam to gather new insights on several fundamental questions about the neutron



The CEBAF Large Acceptance Spectrometer (CLAS) is like a perfect survey instrument. Because it surrounds the interaction point in Jefferson Lab’s Hall B, it can record several particles produced in a subatomic interaction at once. More than 40,000 data channels convey information on the trajectory (measured with drift chambers), speed (time-of-flight counters) and energy (electromagnetic calorimeters) for all detected particles, up to 3,000 times a second. Often, multiple experiments run at the same time in Hall B, and data for all of them are collected simultaneously.

During the recent (February through mid-March) run dubbed "E6," researchers used CLAS together with CEBAF’s 5.7 GeV continuous electron beam to gather new insights on several fundamental questions about the neutron. The neutron is one of the two building blocks (together with the proton) of every nucleus, and its properties are just as interesting and important as those of the proton. Unfortunately, these properties are usually obscured because neutrons are generally bound inside nuclei. E6 collaborators from several universities and Jefferson Lab, working on the experiment "Electron Scattering from a High-Momentum Nucleon in Deuterium" are seeking a clearer view of this elusive neutral partner of the proton. This experiment was proposed by co-spokespersons Keith Griffioen, College of William and Mary; and Sebastian Kuhn, Old Dominion University.


Kuhn, an ODU associate professor of physics, says that the overall results of the study, which ended March 10, appear promising.

"We’re not ready to say we’ve found new things in our data. So far, we haven’t analyzed enough data to say what ultimately we’ll discover," he contends. "What we can say is that we’ve developed a method of extracting the true energy needed to excite a neutron resonance, even if the neutron is moving. We collected all the data we were hoping for; and I believe we’ll learn important things about the neutron’s internal structure."

Scientists must observe neutron behavior indirectly because single neutrons are inherently unstable. That’s why researchers must use the nucleus to study neutrons, Kuhn explains. Unbound from their stable pairing with protons inside the nucleus, neutrons - which have more than 1,800 times the mass of electrons and are just slightly more massive than their partnering protons - decay by emitting radiation, in the form of a proton, an electron and a particle known as an antineutrino. Experimenters directed Hall B’s electron beam into a vial filled with deuterium liquid. Deuterium is a "heavy" isotope of hydrogen, with one proton and one neutron in its nucleus. Because both are bound together in the atomic nucleus as a pair, their movements are mirror images of each other. As either is ejected from the nucleus, the other is liberated as well, and scientists are able to infer their initial motion from the resultant trajectories.

"We basically take a snapshot of how fast and in what direction the proton, and therefore the neutron, was moving before being hit by the electron," Kuhn explains. "Our experiment can tell us two things. First, it reveals what’s going on inside the neutron. Secondly, it tells us how being bound to a proton changes its properties."

Kuhn suggests another method of visualization might be to compare the scattering process to using a hammer to gauge the nature of a water glass. If one would touch a hammer lightly to the glass, without breaking it, certain properties like smoothness and shape could be inferred. (This is called "elastic scattering" in physics and has been used to measure form factors of the proton and neutron in JLab’s Halls A and C.) Strike the glass lightly with the hammer, and the sound it makes reveals more about the structural composition of the glass and, therefore, its method of manufacture. (This corresponds to the excitation of neutron resonances through "inelastic scattering.") Ultimately, the hammer could break the glass; examining the pieces could yield even more insights. "If you hit it really hard and smash the glass - in physics, when we hit a target at high energies, we call it ’deep inelastic scattering’ - you learn from the size of the pieces and how much they resist the hammer blows," Kuhn explains. "In all of these cases, knowing how the neutron ? ’the glass’ ? was moving before striking it with the ’hammer’ allows us to get much more accurate and detailed information." Scientists also want to compare the properties of fast and slow moving neutrons, since high initial speed means that the proton and neutron were close to each other before the neutron was struck. In this Hall B experiment, most of the observations occurred on fast-moving neutrons, which may have a modified structure because of the close proximity of protons. A slow-moving neutron, on the other hand - one that moves no faster than one-tenth the speed of light - "is as close to a free neutron as one will ever get," Kuhn says. "Then we can really learn about neutron structure." To do this, Kuhn and his colleagues have formed the Bound Nucleon Structure Collaboration, or BONUS, which hopes to conduct a follow-on experiment. If approved, that study would run in Hall B, during 2004.

Scientists would also like to learn more about neutrons colliding with their proton partners before both fly apart. According to a theory called "Color Transparency," if the neutron is struck hard enough, it becomes compressed momentarily and can more easily avoid colliding with the proton on the way out. Details of this process would prove invaluable in painting a complete picture of these two building blocks of nuclear matter. Data on this process were collected for the second experiment of the E6 run, which was proposed by Kim Egiyan, Yerevan Physics Institute; Keith Griffioen, W&M; and Mark Strikman, Pennsylvania State University.

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>