Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timing is critical as launch windows approach

06.09.2002

There will be greater tension than usual among engineers and scientists at Europe`s spaceport at Kourou, French Guiana, in January 2003, as they gather to see ESA`s comet-chasing spacecraft Rosetta departing on its long journey. If it is to keep its rendezvous with Comet Wirtanen in 2012, Rosetta must lift off on its Ariane-5 launcher no sooner than 03:40 CET on 13 January 2003 and no later than the end of that month.

This span of suitable dates is called a launch window. For interplanetary missions, such windows are much stricter than for satellites orbiting the Earth. To send a spacecraft from the ever-moving Earth to a planet or a comet following another course through space is highly complicated. Timing is everything. Before it can meet Comet Wirtanen, far out in space, Rosetta first has a series of planetary appointments to keep. With each close fly-by of a planet, it receives an energy boost because of the planet`s gravitational pull. The spacecraft is due to pass by Mars in August 2005, then do high-speed fly-bys of the Earth in November 2005 and November 2007.

In a way, Rosetta is like a passenger on a train journey involving several changes. Unless the first train leaves right on time, with the spacecraft on-board, it will miss the later connections. If it departed after 31 January 2003, Rosetta would be unable to reach the target comet.

"The cosmic clock of the Solar System fixed our launch date when Comet Wirtanen was selected as Rosetta`s target ten years ago," comments John Ellwood, project manager for the mission. "Although there are risks in a precise, rather short launch window, it`s had the advantage that everyone concerned knew there was no room for discussion - they had to be ready."

Besides the restricted span of launch dates, there is also a tight limit on the time of day at which Rosetta can leave Earth. Because the Earth rotates, Kourou must be correctly positioned in relation to the direction in which the spacecraft must head off, on the first leg of its interplanetary journey. The daily window is about 20 minutes, during which time the Earth rotates through 5 degrees.

In May 2003, similar concerns about a launch window will preoccupy the engineers and scientists of ESA`s Mars Express mission, at the Baikonur Cosmodrome in Kazakhstan, in the former Soviet Union. There the launcher will be a Soyuz-Fregat rocket. Scientists have always planned to use the especially favourable relative positions of Earth and Mars occurring in mid-2003 (and not repeated until 2020) for Mars Express to have an express flight to the Red Planet.

Opportunities to fly to Mars occur every 26 months, but the travelling distance varies a lot because the orbit of Mars is elliptical, that is, egg-shaped. The 2003 opportunity coincides with a time when the Earth is about to overtake Mars, as the planets orbit around the Sun, and when Mars happens to be in the closest sector of its orbit. The Mars Express launch window opens at 20:41 CET on 23 May 2003 and closes at 17:47 CET on 21 June 2003.

Almost nothing in space stands still with respect to Earth, so ESA`s scientists will have to be careful that their craft, Rosetta, leaves Earth at the right time and in the right way. The spacecraft has a long trip ahead.

Monica Talevi | AlphaGalileo
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>