Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sharper look at near Earth asteroid 2002 NY40

04.09.2002


The Near Earth Asteroid 2002 NY40 was observed with the William Herschel Telescope on La Palma, Canary Islands, on the night of August 17 to 18, 2002. The asteroid was imaged just before its closest approach to Earth, using the Adaptive Optics system NAOMI. These are the first images of a Near Earth Asteroid obtained with an Adaptive Optics system. During these observations the asteroid was 750,000 kilometres away, twice the distance to the Moon, and moving very rapidly across the sky (crossing a distance similar to the diameter of the Moon in 6 minutes or at 65,000 kilometres per hour). Despite the technical difficulties introduced by this, very high quality images were obtained in the near-infrared with a resolution of 0.11 arcseconds. This resolution is close to the theoretical limit of the telescope, and sets an upper limit to the size of the asteroid: only 400 metres across at the time of the observations.

Measuring the size of asteroids helps astronomers understand their nature and formation history as well as the potential threat they pose.

Near Earth Asteroids are a small population of asteroids that periodically approach or intersect the orbit of our planet, and have the possibility of colliding with the Earth as probably happened 65 million years ago, ending the dinosaur era. However, the probability that such an impact could happen is very low and in particular Near Earth Asteroid 2002 NY40 represents no danger to human live on Earth.



Close encounters of large Near Earth Asteroids such as 2002 NY40 on August 18 happen approximately every 50 years. The last known case was NEA 2001 CU11 which passed just outside the Moon`s orbit on August 31, 1925. Nobody saw that approach because that asteroid was not discovered until 77 years later. 2002 NY40 was discovered on July 14, 2002 by the LINEAR telescope in New Mexico (USA), providing a unique opportunity to obtain observations of the asteroid from the Earth during its flyby.

Several observers have reported variations in the brightness of 2002 NY40, suggesting that it is highly elongated and tumbling. Further monitoring of these variations will tell us whether the asteroid was viewed end-on or side-on, and thus allowing the determination of the size and the shape more precisely.

NAOMI is the WHT`s Adaptive Optics system, built by a team from the University of Durham and the Astronomy Technology Centre, UK. It incorporates a system of fast-moving mirror elements which correct in real-time for the defocusing of stars caused by the Earth`s turbulent atmosphere. In good conditions, NAOMI delivers images as sharp as those from Hubble Space Telescope.

The Isaac Newton Group of Telescopes (ING) is an establishment of the Particle Physics and Astronomy Research Council (PPARC) of the United Kingdom, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) of the Netherlands and the Instituto de Astrofísica de Canarias (IAC) in Spain. The ING operates the 4.2 metre William Herschel Telescope, the 2.5 metre Isaac Newton Telescope, and the 1.0 metre Jacobus Kapteyn Telescope. The telescopes are located in the Spanish Roque de Los Muchachos Observatory on La Palma which is operated by the Instituto de Astrofísica de Canarias (IAC).

The ING NAOMI team consists of Dr. Chris Benn, Dr. Sebastian Els, Dr. Tom Gregory, Dr. Roy Østensen and Dr. Francisco Prada.

Javier Méndez | AlphaGalileo

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>