Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sharper look at near Earth asteroid 2002 NY40

04.09.2002


The Near Earth Asteroid 2002 NY40 was observed with the William Herschel Telescope on La Palma, Canary Islands, on the night of August 17 to 18, 2002. The asteroid was imaged just before its closest approach to Earth, using the Adaptive Optics system NAOMI. These are the first images of a Near Earth Asteroid obtained with an Adaptive Optics system. During these observations the asteroid was 750,000 kilometres away, twice the distance to the Moon, and moving very rapidly across the sky (crossing a distance similar to the diameter of the Moon in 6 minutes or at 65,000 kilometres per hour). Despite the technical difficulties introduced by this, very high quality images were obtained in the near-infrared with a resolution of 0.11 arcseconds. This resolution is close to the theoretical limit of the telescope, and sets an upper limit to the size of the asteroid: only 400 metres across at the time of the observations.

Measuring the size of asteroids helps astronomers understand their nature and formation history as well as the potential threat they pose.

Near Earth Asteroids are a small population of asteroids that periodically approach or intersect the orbit of our planet, and have the possibility of colliding with the Earth as probably happened 65 million years ago, ending the dinosaur era. However, the probability that such an impact could happen is very low and in particular Near Earth Asteroid 2002 NY40 represents no danger to human live on Earth.



Close encounters of large Near Earth Asteroids such as 2002 NY40 on August 18 happen approximately every 50 years. The last known case was NEA 2001 CU11 which passed just outside the Moon`s orbit on August 31, 1925. Nobody saw that approach because that asteroid was not discovered until 77 years later. 2002 NY40 was discovered on July 14, 2002 by the LINEAR telescope in New Mexico (USA), providing a unique opportunity to obtain observations of the asteroid from the Earth during its flyby.

Several observers have reported variations in the brightness of 2002 NY40, suggesting that it is highly elongated and tumbling. Further monitoring of these variations will tell us whether the asteroid was viewed end-on or side-on, and thus allowing the determination of the size and the shape more precisely.

NAOMI is the WHT`s Adaptive Optics system, built by a team from the University of Durham and the Astronomy Technology Centre, UK. It incorporates a system of fast-moving mirror elements which correct in real-time for the defocusing of stars caused by the Earth`s turbulent atmosphere. In good conditions, NAOMI delivers images as sharp as those from Hubble Space Telescope.

The Isaac Newton Group of Telescopes (ING) is an establishment of the Particle Physics and Astronomy Research Council (PPARC) of the United Kingdom, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) of the Netherlands and the Instituto de Astrofísica de Canarias (IAC) in Spain. The ING operates the 4.2 metre William Herschel Telescope, the 2.5 metre Isaac Newton Telescope, and the 1.0 metre Jacobus Kapteyn Telescope. The telescopes are located in the Spanish Roque de Los Muchachos Observatory on La Palma which is operated by the Instituto de Astrofísica de Canarias (IAC).

The ING NAOMI team consists of Dr. Chris Benn, Dr. Sebastian Els, Dr. Tom Gregory, Dr. Roy Østensen and Dr. Francisco Prada.

Javier Méndez | AlphaGalileo

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>