Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sharper look at near Earth asteroid 2002 NY40

04.09.2002


The Near Earth Asteroid 2002 NY40 was observed with the William Herschel Telescope on La Palma, Canary Islands, on the night of August 17 to 18, 2002. The asteroid was imaged just before its closest approach to Earth, using the Adaptive Optics system NAOMI. These are the first images of a Near Earth Asteroid obtained with an Adaptive Optics system. During these observations the asteroid was 750,000 kilometres away, twice the distance to the Moon, and moving very rapidly across the sky (crossing a distance similar to the diameter of the Moon in 6 minutes or at 65,000 kilometres per hour). Despite the technical difficulties introduced by this, very high quality images were obtained in the near-infrared with a resolution of 0.11 arcseconds. This resolution is close to the theoretical limit of the telescope, and sets an upper limit to the size of the asteroid: only 400 metres across at the time of the observations.

Measuring the size of asteroids helps astronomers understand their nature and formation history as well as the potential threat they pose.

Near Earth Asteroids are a small population of asteroids that periodically approach or intersect the orbit of our planet, and have the possibility of colliding with the Earth as probably happened 65 million years ago, ending the dinosaur era. However, the probability that such an impact could happen is very low and in particular Near Earth Asteroid 2002 NY40 represents no danger to human live on Earth.



Close encounters of large Near Earth Asteroids such as 2002 NY40 on August 18 happen approximately every 50 years. The last known case was NEA 2001 CU11 which passed just outside the Moon`s orbit on August 31, 1925. Nobody saw that approach because that asteroid was not discovered until 77 years later. 2002 NY40 was discovered on July 14, 2002 by the LINEAR telescope in New Mexico (USA), providing a unique opportunity to obtain observations of the asteroid from the Earth during its flyby.

Several observers have reported variations in the brightness of 2002 NY40, suggesting that it is highly elongated and tumbling. Further monitoring of these variations will tell us whether the asteroid was viewed end-on or side-on, and thus allowing the determination of the size and the shape more precisely.

NAOMI is the WHT`s Adaptive Optics system, built by a team from the University of Durham and the Astronomy Technology Centre, UK. It incorporates a system of fast-moving mirror elements which correct in real-time for the defocusing of stars caused by the Earth`s turbulent atmosphere. In good conditions, NAOMI delivers images as sharp as those from Hubble Space Telescope.

The Isaac Newton Group of Telescopes (ING) is an establishment of the Particle Physics and Astronomy Research Council (PPARC) of the United Kingdom, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) of the Netherlands and the Instituto de Astrofísica de Canarias (IAC) in Spain. The ING operates the 4.2 metre William Herschel Telescope, the 2.5 metre Isaac Newton Telescope, and the 1.0 metre Jacobus Kapteyn Telescope. The telescopes are located in the Spanish Roque de Los Muchachos Observatory on La Palma which is operated by the Instituto de Astrofísica de Canarias (IAC).

The ING NAOMI team consists of Dr. Chris Benn, Dr. Sebastian Els, Dr. Tom Gregory, Dr. Roy Østensen and Dr. Francisco Prada.

Javier Méndez | AlphaGalileo

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>