Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Sun`s Twisted Mysteries


Solar physicists at the Mullard Space Science Laboratory (MSSL, University College London) in Surrey have found new clues to the thirty year old puzzle of why the Sun ejects huge bubbles of electrified gas, laced with magnetic field, known as coronal mass ejections (CMEs). In a paper published this month in the Journal of Solar Physics, they explain that the key to understanding CMEs, which can cause electricity black outs on Earth, may be due to twisted magnetic fields originating deep within the heart of the Sun.

CMEs are violent solar eruptions which travel at 1000 times the speed of Concorde and contain more mass then Mt. Everest. They have proved hazardous to modern technology, seen most dramatically in 1989 when a CME magnified the solar wind, which then slammed into the Earth. This caused widespread blackouts, which cost the Canadian national grid several million of pounds in damage to their systems. On the more aesthetic side, CMEs are also responsible for the northern (and southern) lights, Aurora Borealis.

Dr. Lucie Green of MSSL says, `Ultimately we need to know why CMEs occur so that one day we will be able to predict them just like we do with the weather on Earth. This is the new science of Space Weather.`

CMEs are seen when the Sun is artificially eclipsed and they contain beautifully twisted structures. Tracing them back to their solar origin reveals very twisted structures on the surface of the Sun too. This twist is contained in the Sun`s magnetic field and, just like a stretched elastic band, it contains energy, which then blasts the CME into space.

Until recently the source of the twist (which is known more precisely as helicity) has not been known. There are two options, the first being that it is created at the surface of the Sun. Now however, a group of scientists at MSSL, with colleagues in France and Argentina, have studied CME source regions using data from the international SoHO and Yohkoh satellites, and found that the second, more likely explanation, is that the magnetic field becomes charged with helicity, or twist, deep within the Sun. Here, the gas is constantly rising and falling due to the heat created by the fusion furnace at the Sun`s core. Indeed, it may even be related to the creation of the magnetic field itself, known as the solar dynamo.

Dr. Green says, `We have only known about CMEs for the last 30 years. The UK plays a leading role in solar physics and these new results are helping us make substantial advancements in our understanding of these beautiful, but potentially hazardous, phenomena.`

Julia Maddock | alfa

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>