Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI gold chain study gets to heart of matter

29.08.2002


Discovery reveals smallest size molecules form functional structures; nanotechnology, research implications may be significant



While it may not make much of an anniversary present, a gold chain built atom by atom by UC Irvine physicist Wilson Ho offers an answer to one of the basic questions of nanotechnology—how small can you go?

In the first study of its kind, Ho and his colleagues have discovered the molecular phase when a cluster of atoms develops into a solid structure, a finding that can have a significant impact in the future development of metal structures built at the molecular scale. The study—which appears on the Science Express website, a service of Science magazine—also suggests a limit on the tiniest size that electrically conductive molecules can be constructed, and it presents a new method for researchers to build and examine these structures.


"This research answers fundamental questions on how solids form from an assembly of single atoms," said Ho, the Donald Bren Professor of Physics & Astronomy and Chemistry. "It allows us for the first time to see matter form in its smallest unit, and it can have important implications for the construction of metallic nanostructures that can be used in catalysis, electronic circuits and data storage."
Ho, working with fellow UCI researchers Niklas Nilius and T. Mitch Wallis, employed a scanning tunneling microscope to build a chain of gold atoms in order to measure how electron states change as more atoms are added to the chain. Starting with a single atom and adding one at a time, the researchers succeeded in measuring the electrical conductivity in these states as the atoms shared electrons, and these measurements varied dramatically as atoms were added to the chain. The scanning tunneling microscope enabled the researchers not only to manipulate individual atoms but also to capture images of the chain and measure its properties. As a result, the researchers were able to obtain a clear connection between the geometry of the fabricated nanostructure and its electronic properties.

As the researchers added the fifth and sixth atoms, the chain began to exhibit the collective properties of a bulk structure, which is when atoms in a molecule lose their individual characteristics and assume those of the overall structure. It is at this point when a metallic molecule becomes conductive and can be used as an electrical conduit.

Ultimately, the gold chain reached 20 atoms long, although in principle there is no limit to how long a chain can be built. In measurements taken as the chain grew from six atoms to 20, the states for the electrons showed only small variations and had practically converged to show properties typical of solids with a larger number of atoms. Ho said that the consistency of these latter measurements further support the concept that a functional gold structure can be built with as few as six atoms.

"What these experiments provide is a new way to study the electronic properties of materials at a nanoscale," Ho said. "We have been able to build a gold bulk structure with six atoms, but in a larger scale, we are starting to answer the question of how many atoms are needed to build a material that has potential utility.

"While it is not practical to mass produce these chains as one-dimensional conductors, catalysts or data storage devices, these studies provide a scientific basis for future nanotechnology," he added. "The results from this research contribute to our understanding of the behavior of matter as a function of its size."

In further research, Ho and his colleagues are studying the electronic properties both of gold atoms constructed in a two-dimensional array and of a chain of silver atoms. Ho used gold in this study because of its unique electronic properties that can be readily observed and controlled through the use of a scanning tunneling microscope. By extending the present study to include other types of atoms, it would be possible to understand a wide range of materials such as alloys, magnets and catalysts at the nanoscale.

Nilius is a UCI postdoctoral researcher, and Wallis is a graduate student on leave-of-absence from Cornell University. The National Science Foundation funded the research.

Tom Vasich | EurekAlert!
Further information:
http://today.uci.edu/r

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>