Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI gold chain study gets to heart of matter

29.08.2002


Discovery reveals smallest size molecules form functional structures; nanotechnology, research implications may be significant



While it may not make much of an anniversary present, a gold chain built atom by atom by UC Irvine physicist Wilson Ho offers an answer to one of the basic questions of nanotechnology—how small can you go?

In the first study of its kind, Ho and his colleagues have discovered the molecular phase when a cluster of atoms develops into a solid structure, a finding that can have a significant impact in the future development of metal structures built at the molecular scale. The study—which appears on the Science Express website, a service of Science magazine—also suggests a limit on the tiniest size that electrically conductive molecules can be constructed, and it presents a new method for researchers to build and examine these structures.


"This research answers fundamental questions on how solids form from an assembly of single atoms," said Ho, the Donald Bren Professor of Physics & Astronomy and Chemistry. "It allows us for the first time to see matter form in its smallest unit, and it can have important implications for the construction of metallic nanostructures that can be used in catalysis, electronic circuits and data storage."
Ho, working with fellow UCI researchers Niklas Nilius and T. Mitch Wallis, employed a scanning tunneling microscope to build a chain of gold atoms in order to measure how electron states change as more atoms are added to the chain. Starting with a single atom and adding one at a time, the researchers succeeded in measuring the electrical conductivity in these states as the atoms shared electrons, and these measurements varied dramatically as atoms were added to the chain. The scanning tunneling microscope enabled the researchers not only to manipulate individual atoms but also to capture images of the chain and measure its properties. As a result, the researchers were able to obtain a clear connection between the geometry of the fabricated nanostructure and its electronic properties.

As the researchers added the fifth and sixth atoms, the chain began to exhibit the collective properties of a bulk structure, which is when atoms in a molecule lose their individual characteristics and assume those of the overall structure. It is at this point when a metallic molecule becomes conductive and can be used as an electrical conduit.

Ultimately, the gold chain reached 20 atoms long, although in principle there is no limit to how long a chain can be built. In measurements taken as the chain grew from six atoms to 20, the states for the electrons showed only small variations and had practically converged to show properties typical of solids with a larger number of atoms. Ho said that the consistency of these latter measurements further support the concept that a functional gold structure can be built with as few as six atoms.

"What these experiments provide is a new way to study the electronic properties of materials at a nanoscale," Ho said. "We have been able to build a gold bulk structure with six atoms, but in a larger scale, we are starting to answer the question of how many atoms are needed to build a material that has potential utility.

"While it is not practical to mass produce these chains as one-dimensional conductors, catalysts or data storage devices, these studies provide a scientific basis for future nanotechnology," he added. "The results from this research contribute to our understanding of the behavior of matter as a function of its size."

In further research, Ho and his colleagues are studying the electronic properties both of gold atoms constructed in a two-dimensional array and of a chain of silver atoms. Ho used gold in this study because of its unique electronic properties that can be readily observed and controlled through the use of a scanning tunneling microscope. By extending the present study to include other types of atoms, it would be possible to understand a wide range of materials such as alloys, magnets and catalysts at the nanoscale.

Nilius is a UCI postdoctoral researcher, and Wallis is a graduate student on leave-of-absence from Cornell University. The National Science Foundation funded the research.

Tom Vasich | EurekAlert!
Further information:
http://today.uci.edu/r

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>