Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper-oxide plane at surface of superconductor has surprising properties

27.08.2002


The peculiar behavior of high-temperature superconductors has baffled scientists for many years. Now, by imaging the copper-oxide plane in a cuprate superconductor for the first time, researchers at the University of Illinois at Urbana-Champaign have found several new pieces to this important puzzle.

As reported in the Aug. 19 issue of Physical Review Letters, physics professor Ali Yazdani, graduate student Shashank Misra, and colleagues used a scanning tunneling microscope to demonstrate that a single copper-oxide plane can form a stable layer at the superconductor’s surface. This plane behaves differently when exposed at the surface than when buried inside the crystal, the researchers discovered, offering additional insight into the behavior of high-temperature superconductors.

"In contrast to previous studies, we found that this copper-oxide layer exhibits an unusual suppression of tunneling conductance at low energies," Yazdani said. "We think the orbital symmetry of the plane’s electronic states may be influencing the tunneling process and is responsible for the strange behavior we observed at the surface."



Surface-sensitive techniques, such as electron tunneling and photoemission, have been crucial in gleaning information about high-temperature superconductors, Yazdani said. But it hasn’t always been clear from which layer the information was coming. By imaging at the atomic scale and probing on the nanoscale, the researchers achieved much higher precision.

"High-temperature superconductors are layered compounds containing one or more copper-oxide planes and other layers that act as charge reservoirs," Yazdani said. "Like dopants in a semiconductor, these layers donate charge carriers to the copper-oxide planes, making them conducting. The strong electronic interactions in the copper-oxide planes are responsible for the material’s unusual electronic properties."

To image the surface of thin films of superconducting crystal, Yazdani and his colleagues used a low-temperature scanning tunneling microscope that they built at Illinois. By exploring large areas of the sample and correlating the STM topographic images with X-ray crystallographic data, the researchers were able to identify individual layers of copper oxide and of bismuth oxide, and then measure their electronic properties.

"With the STM, we can send electrons through the tip and measure the rate at which they flow into the surface," Yazdani said. "We found a very strong contrast in the spectra taken on the two surfaces. The electron tunneling in the copper-oxide plane was strongly suppressed at low energies."

This behavior is unexpected in a d-wave superconductor, Yazdani said, and could demonstrate the dramatic influence of the layered structure on the surface electronic properties. The observations can best be explained by the way in which the STM tip couples to the electronic states of the copper-oxide plane, the researchers concluded.

"At low energies, electrons from the tip are constrained by the orbital symmetry of the plane’s electronic wave function, which resembles a cloverleaf pattern," Yazdani said. "This directional dependence of the current can explain the suppressed tunneling."

Previous measurements had been performed on surfaces terminated with other layers – bismuth oxide, for example – where the copper-oxide plane was buried under the surface. In those experiments, however, it was not apparent how the STM tip was coupling to the copper-oxide plane, Yazdani said.

"You could theorize that the other layers had no effect on the measurement, but that flies in the face of our experiment," Yazdani said. "From our results, it is clear that what you put at the surface makes a huge difference in what you measure."

Having direct access to the surface means scientists can begin manipulating its properties by changing what’s under the surface. The Illinois work also opens a new methodology for probing electrons in the copper-oxide plane.

Collaborators on the project were physics professor James Eckstein, postdoctoral research associate Tiziana DiLuccio, and graduate students Seongshik Oh and Daniel Hornbaker. The National Science Foundation, Office of Naval Research and the U.S. Department of Energy funded the work.

Jim Kloeppel | UIUC News Bureau
Further information:
http://www.news.uiuc.edu/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>