Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper-oxide plane at surface of superconductor has surprising properties

27.08.2002


The peculiar behavior of high-temperature superconductors has baffled scientists for many years. Now, by imaging the copper-oxide plane in a cuprate superconductor for the first time, researchers at the University of Illinois at Urbana-Champaign have found several new pieces to this important puzzle.

As reported in the Aug. 19 issue of Physical Review Letters, physics professor Ali Yazdani, graduate student Shashank Misra, and colleagues used a scanning tunneling microscope to demonstrate that a single copper-oxide plane can form a stable layer at the superconductor’s surface. This plane behaves differently when exposed at the surface than when buried inside the crystal, the researchers discovered, offering additional insight into the behavior of high-temperature superconductors.

"In contrast to previous studies, we found that this copper-oxide layer exhibits an unusual suppression of tunneling conductance at low energies," Yazdani said. "We think the orbital symmetry of the plane’s electronic states may be influencing the tunneling process and is responsible for the strange behavior we observed at the surface."



Surface-sensitive techniques, such as electron tunneling and photoemission, have been crucial in gleaning information about high-temperature superconductors, Yazdani said. But it hasn’t always been clear from which layer the information was coming. By imaging at the atomic scale and probing on the nanoscale, the researchers achieved much higher precision.

"High-temperature superconductors are layered compounds containing one or more copper-oxide planes and other layers that act as charge reservoirs," Yazdani said. "Like dopants in a semiconductor, these layers donate charge carriers to the copper-oxide planes, making them conducting. The strong electronic interactions in the copper-oxide planes are responsible for the material’s unusual electronic properties."

To image the surface of thin films of superconducting crystal, Yazdani and his colleagues used a low-temperature scanning tunneling microscope that they built at Illinois. By exploring large areas of the sample and correlating the STM topographic images with X-ray crystallographic data, the researchers were able to identify individual layers of copper oxide and of bismuth oxide, and then measure their electronic properties.

"With the STM, we can send electrons through the tip and measure the rate at which they flow into the surface," Yazdani said. "We found a very strong contrast in the spectra taken on the two surfaces. The electron tunneling in the copper-oxide plane was strongly suppressed at low energies."

This behavior is unexpected in a d-wave superconductor, Yazdani said, and could demonstrate the dramatic influence of the layered structure on the surface electronic properties. The observations can best be explained by the way in which the STM tip couples to the electronic states of the copper-oxide plane, the researchers concluded.

"At low energies, electrons from the tip are constrained by the orbital symmetry of the plane’s electronic wave function, which resembles a cloverleaf pattern," Yazdani said. "This directional dependence of the current can explain the suppressed tunneling."

Previous measurements had been performed on surfaces terminated with other layers – bismuth oxide, for example – where the copper-oxide plane was buried under the surface. In those experiments, however, it was not apparent how the STM tip was coupling to the copper-oxide plane, Yazdani said.

"You could theorize that the other layers had no effect on the measurement, but that flies in the face of our experiment," Yazdani said. "From our results, it is clear that what you put at the surface makes a huge difference in what you measure."

Having direct access to the surface means scientists can begin manipulating its properties by changing what’s under the surface. The Illinois work also opens a new methodology for probing electrons in the copper-oxide plane.

Collaborators on the project were physics professor James Eckstein, postdoctoral research associate Tiziana DiLuccio, and graduate students Seongshik Oh and Daniel Hornbaker. The National Science Foundation, Office of Naval Research and the U.S. Department of Energy funded the work.

Jim Kloeppel | UIUC News Bureau
Further information:
http://www.news.uiuc.edu/

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>