Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper-oxide plane at surface of superconductor has surprising properties

27.08.2002


The peculiar behavior of high-temperature superconductors has baffled scientists for many years. Now, by imaging the copper-oxide plane in a cuprate superconductor for the first time, researchers at the University of Illinois at Urbana-Champaign have found several new pieces to this important puzzle.

As reported in the Aug. 19 issue of Physical Review Letters, physics professor Ali Yazdani, graduate student Shashank Misra, and colleagues used a scanning tunneling microscope to demonstrate that a single copper-oxide plane can form a stable layer at the superconductor’s surface. This plane behaves differently when exposed at the surface than when buried inside the crystal, the researchers discovered, offering additional insight into the behavior of high-temperature superconductors.

"In contrast to previous studies, we found that this copper-oxide layer exhibits an unusual suppression of tunneling conductance at low energies," Yazdani said. "We think the orbital symmetry of the plane’s electronic states may be influencing the tunneling process and is responsible for the strange behavior we observed at the surface."



Surface-sensitive techniques, such as electron tunneling and photoemission, have been crucial in gleaning information about high-temperature superconductors, Yazdani said. But it hasn’t always been clear from which layer the information was coming. By imaging at the atomic scale and probing on the nanoscale, the researchers achieved much higher precision.

"High-temperature superconductors are layered compounds containing one or more copper-oxide planes and other layers that act as charge reservoirs," Yazdani said. "Like dopants in a semiconductor, these layers donate charge carriers to the copper-oxide planes, making them conducting. The strong electronic interactions in the copper-oxide planes are responsible for the material’s unusual electronic properties."

To image the surface of thin films of superconducting crystal, Yazdani and his colleagues used a low-temperature scanning tunneling microscope that they built at Illinois. By exploring large areas of the sample and correlating the STM topographic images with X-ray crystallographic data, the researchers were able to identify individual layers of copper oxide and of bismuth oxide, and then measure their electronic properties.

"With the STM, we can send electrons through the tip and measure the rate at which they flow into the surface," Yazdani said. "We found a very strong contrast in the spectra taken on the two surfaces. The electron tunneling in the copper-oxide plane was strongly suppressed at low energies."

This behavior is unexpected in a d-wave superconductor, Yazdani said, and could demonstrate the dramatic influence of the layered structure on the surface electronic properties. The observations can best be explained by the way in which the STM tip couples to the electronic states of the copper-oxide plane, the researchers concluded.

"At low energies, electrons from the tip are constrained by the orbital symmetry of the plane’s electronic wave function, which resembles a cloverleaf pattern," Yazdani said. "This directional dependence of the current can explain the suppressed tunneling."

Previous measurements had been performed on surfaces terminated with other layers – bismuth oxide, for example – where the copper-oxide plane was buried under the surface. In those experiments, however, it was not apparent how the STM tip was coupling to the copper-oxide plane, Yazdani said.

"You could theorize that the other layers had no effect on the measurement, but that flies in the face of our experiment," Yazdani said. "From our results, it is clear that what you put at the surface makes a huge difference in what you measure."

Having direct access to the surface means scientists can begin manipulating its properties by changing what’s under the surface. The Illinois work also opens a new methodology for probing electrons in the copper-oxide plane.

Collaborators on the project were physics professor James Eckstein, postdoctoral research associate Tiziana DiLuccio, and graduate students Seongshik Oh and Daniel Hornbaker. The National Science Foundation, Office of Naval Research and the U.S. Department of Energy funded the work.

Jim Kloeppel | UIUC News Bureau
Further information:
http://www.news.uiuc.edu/

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>