Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An exciting new state for excitons

26.08.2002


A Bose-Einstein condensate, a form of matter heretofore only observed in atoms chilled to less than a millionth of a degree above absolute zero, may now have been observed at temperatures in excess of one degree Kelvin in excitons, the bound pairs of electrons and holes that enable semiconductors to function as electronic devices.

Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with a scientist at the University of California’s Santa Barbara campus, have reported the observation of excitons that display a macroscopically ordered electronic state which indicates they have formed a new exciton condensate. The observation also holds potential for ultrafast digital logic elements and quantum computing devices.

"The excitons were expected to form a quantum liquid or even a Bose-Einstein condensate, this state had been predicted in theory since the 1960s, but the macroscopically ordered exciton state that we found is a new state that was not predicted," says Leonid Butov, a solid state physicist who holds a joint appointment with Berkeley Lab’s Materials Sciences Division (MSD) and with the Institute of Solid State Physics at the Russian Academy of Sciences.



Just as the Nobel prize-winning creation of Bose-Einstein condensate atoms offered scientists a new look into the hidden world of quantum mechanics, so, too, would the creation of Bose-Einstein condensate excitons provide scientists with new possibilities for observing and manipulating quantum properties.

The creation of a new exciton condensate was reported in the August 15, 2002 issue of the journal Nature, in a paper co-authored by Butov, Arthur Gossard of UC Santa Barbara’s Department of Electrical and Computer Engineering, and Daniel Chemla, director of Berkeley Lab’s Advanced Light Source.

The new exciton condensate was observed at Berkeley Lab using photoluminescence on samples composed of the semiconductors gallium arsenide and aluminum gallium arsenide. The semiconductor samples were of extremely high quality and were prepared by Gossard in Santa Barbara.

The observations were made by shining laser light on specially designed nano-sized structures called quantum wells which were grown at the interface between the two semiconductors. These quantum wells allow electrons and electron holes (vacant energy spaces that are positively-charged) to move freely through the two dimensions parallel to the quantum well plane, but not through the perpendicular dimension. Under the right energy conditions, application of an electrical field in this perpendicular direction will bind an electron in one quantum well to a hole in another across a potential barrier to create a relatively stable exciton.

"An exciton functions as a quasi-particle, akin to a hydrogen atom," says Butov, "which means that by reducing temperature or increasing density, it is a candidate to form a Bose-Einstein condensate."

Trapped in the quantum wells, their movement restricted to two-dimensions, the excitons created by Butov and his colleagues condensed at the bottom of the wells as their temperature dropped. Because the mass of these excitons was so much smaller than that of the atoms used to form atomic Bose-Einstein condensates, the critical temperature at which condensation occurred, about one degree Kelvin (-272 degrees Celsius or -459 degrees Fahrenheit) was much higher. By comparison, to create the first atomic Bose-Einstein condensates back in 1995, researchers at the University of Colorado had the daunting task of chilling a ball of rubidium atoms to as close to absolute zero as the laws of physics allow.

Under photoluminescence, the macroscopically ordered exciton state that Butov and his colleagues observed appeared against a black background as a bright ring that had been fragmented into a chain of circular spots extending out to one millimeter in circumference.

"The existence of this periodic ordering shows that the exciton state formed in the ring has a coherence on a macroscopic length of scale," says Butov. "This coherence is a signature of a condensate. The next step is to do a coherence spectroscopy study, particularly at lower temperatures, that will verify the properties of this new state."

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at www.lbl.gov/.

For more information contact Leonid Butov at (510)486-7475
or via e-mail at LVButov@lbl.gov

Lynn Yarris | EurekAlert!

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>