Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An exciting new state for excitons


A Bose-Einstein condensate, a form of matter heretofore only observed in atoms chilled to less than a millionth of a degree above absolute zero, may now have been observed at temperatures in excess of one degree Kelvin in excitons, the bound pairs of electrons and holes that enable semiconductors to function as electronic devices.

Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with a scientist at the University of California’s Santa Barbara campus, have reported the observation of excitons that display a macroscopically ordered electronic state which indicates they have formed a new exciton condensate. The observation also holds potential for ultrafast digital logic elements and quantum computing devices.

"The excitons were expected to form a quantum liquid or even a Bose-Einstein condensate, this state had been predicted in theory since the 1960s, but the macroscopically ordered exciton state that we found is a new state that was not predicted," says Leonid Butov, a solid state physicist who holds a joint appointment with Berkeley Lab’s Materials Sciences Division (MSD) and with the Institute of Solid State Physics at the Russian Academy of Sciences.

Just as the Nobel prize-winning creation of Bose-Einstein condensate atoms offered scientists a new look into the hidden world of quantum mechanics, so, too, would the creation of Bose-Einstein condensate excitons provide scientists with new possibilities for observing and manipulating quantum properties.

The creation of a new exciton condensate was reported in the August 15, 2002 issue of the journal Nature, in a paper co-authored by Butov, Arthur Gossard of UC Santa Barbara’s Department of Electrical and Computer Engineering, and Daniel Chemla, director of Berkeley Lab’s Advanced Light Source.

The new exciton condensate was observed at Berkeley Lab using photoluminescence on samples composed of the semiconductors gallium arsenide and aluminum gallium arsenide. The semiconductor samples were of extremely high quality and were prepared by Gossard in Santa Barbara.

The observations were made by shining laser light on specially designed nano-sized structures called quantum wells which were grown at the interface between the two semiconductors. These quantum wells allow electrons and electron holes (vacant energy spaces that are positively-charged) to move freely through the two dimensions parallel to the quantum well plane, but not through the perpendicular dimension. Under the right energy conditions, application of an electrical field in this perpendicular direction will bind an electron in one quantum well to a hole in another across a potential barrier to create a relatively stable exciton.

"An exciton functions as a quasi-particle, akin to a hydrogen atom," says Butov, "which means that by reducing temperature or increasing density, it is a candidate to form a Bose-Einstein condensate."

Trapped in the quantum wells, their movement restricted to two-dimensions, the excitons created by Butov and his colleagues condensed at the bottom of the wells as their temperature dropped. Because the mass of these excitons was so much smaller than that of the atoms used to form atomic Bose-Einstein condensates, the critical temperature at which condensation occurred, about one degree Kelvin (-272 degrees Celsius or -459 degrees Fahrenheit) was much higher. By comparison, to create the first atomic Bose-Einstein condensates back in 1995, researchers at the University of Colorado had the daunting task of chilling a ball of rubidium atoms to as close to absolute zero as the laws of physics allow.

Under photoluminescence, the macroscopically ordered exciton state that Butov and his colleagues observed appeared against a black background as a bright ring that had been fragmented into a chain of circular spots extending out to one millimeter in circumference.

"The existence of this periodic ordering shows that the exciton state formed in the ring has a coherence on a macroscopic length of scale," says Butov. "This coherence is a signature of a condensate. The next step is to do a coherence spectroscopy study, particularly at lower temperatures, that will verify the properties of this new state."

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at

For more information contact Leonid Butov at (510)486-7475
or via e-mail at

Lynn Yarris | EurekAlert!

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>