Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starquakes reveal stellar secrets

15.08.2002


Looking into the interior of the Earth or the Sun is a bit similar to examining a baby in its mother`s womb using an ultrasound scan. Light cannot penetrate the area, so we make pictures in these cases using sound waves, which human ears cannot hear. With SOHO, ESA has probed deeply into the Sun using the sound-waves principle, and with great success. The future missions, Solar Orbiter and Eddington, will look inside our Sun and other stars, respectively, in a similar way.



Here on Earth, when scientists recorded slight shakes, or seisms, coming from earthquakes even on distant continents, they began to estimate the routes and the changing speeds of the waves passing through the Earth`s interior. This revealed our planet`s molten core. Nowadays, oil prospectors routinely thump the ground to get seismic echoes from deep-lying strata. Scientists combine earthquake records from seismometers worldwide, to make 3D pictures of the rocks far beneath our feet.

Seismology is the study of earthquake waves. Studying solar sound waves is called helioseismology, from helios, a Greek word for Sun. When you transfer your focus onto the stars, as Eddington will do, you are studying asteroseismology. Although the Sun and stars are made of very hot gas rather than rocks, basic principles about deducing the routes and speeds of internal waves still work.


Sound waves do not travel through space, but scientists can register their activities by subtle changes in the light of the Sun and the stars. The reverberating waves make the visible surface of the Sun rise and fall roughly every few minutes, and the motions affect the wavelength and brightness of the light. The simplest helioseismic telescopes observe the whole Sun oscillating. They detect sharply defined `notes` rather like a musical chord. From these, scientists can deduce the internal layers of the Sun with amazing precision, all the way down to its superheated core.

SOHO`s MDI instrument registers the waves at a million points across the visible surface. It has detected vast streams of hot gas flowing unseen beneath the surface. Most remarkably, MDI can look right through the Sun to observe stormy sunspot regions forming on the far side, which swing into view when the Sun rotates on its axis.

When the next generation of solar spacecraft looks more closely at selected parts of the Sun, helioseismologists are sure to make more sensational discoveries. For ESA`s Solar Orbiter, due for launch around 2012, key targets will be regions near the poles.

"Our special chance to detect sub-surface flows near the poles is one of the most exciting aspects of the Solar Orbiter mission," says Bernhard Fleck, ESA`s Project Scientist for SOHO and study scientist for the Solar Orbiter. "We think these hidden streams of gas have a strong influence on the Sun`s magnetic behaviour, and so can affect its storminess."

For astronomers, the Sun is a fairly typical middle-aged star seen in close-up. All the other stars are so far away that asteroseismologists can observe oscillations only of the whole star. However, as with the Sun, these can provide information never available before about the internal make-up of the stars. Much of what astronomers think they know about the Universe`s structure and evolution depends on their understanding of how stars work. Knowing a star`s age is an important part of this study.

Canadian, Danish, and French satellites will pioneer the field in the next few years, probing between them hundreds of stars. ESA`s Eddington spacecraft, due to fly in 2008, will therefore not be the first space mission to study asteroseismology. However, it will go much farther by examining as many as 50 000 stars, from the smallest to the largest, and from the oldest to the youngest, with an accuracy never seen before. For example, previously, if you wanted to state the age of a 100-million-year-old star, you would have to estimate in the range 80 to 120 million years. Eddington allows you to specify it to be almost exactly 104 million years old.

The sound waves in the Sun and the stars are pitched far too low for human beings to hear, but it is fairly simple to convert them to audible frequencies. To listen to the `Song of the Sun`, go the following site: http://soi.stanford.edu/results/sounds.html

Monica Talevi | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks