Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starquakes reveal stellar secrets

15.08.2002


Looking into the interior of the Earth or the Sun is a bit similar to examining a baby in its mother`s womb using an ultrasound scan. Light cannot penetrate the area, so we make pictures in these cases using sound waves, which human ears cannot hear. With SOHO, ESA has probed deeply into the Sun using the sound-waves principle, and with great success. The future missions, Solar Orbiter and Eddington, will look inside our Sun and other stars, respectively, in a similar way.



Here on Earth, when scientists recorded slight shakes, or seisms, coming from earthquakes even on distant continents, they began to estimate the routes and the changing speeds of the waves passing through the Earth`s interior. This revealed our planet`s molten core. Nowadays, oil prospectors routinely thump the ground to get seismic echoes from deep-lying strata. Scientists combine earthquake records from seismometers worldwide, to make 3D pictures of the rocks far beneath our feet.

Seismology is the study of earthquake waves. Studying solar sound waves is called helioseismology, from helios, a Greek word for Sun. When you transfer your focus onto the stars, as Eddington will do, you are studying asteroseismology. Although the Sun and stars are made of very hot gas rather than rocks, basic principles about deducing the routes and speeds of internal waves still work.


Sound waves do not travel through space, but scientists can register their activities by subtle changes in the light of the Sun and the stars. The reverberating waves make the visible surface of the Sun rise and fall roughly every few minutes, and the motions affect the wavelength and brightness of the light. The simplest helioseismic telescopes observe the whole Sun oscillating. They detect sharply defined `notes` rather like a musical chord. From these, scientists can deduce the internal layers of the Sun with amazing precision, all the way down to its superheated core.

SOHO`s MDI instrument registers the waves at a million points across the visible surface. It has detected vast streams of hot gas flowing unseen beneath the surface. Most remarkably, MDI can look right through the Sun to observe stormy sunspot regions forming on the far side, which swing into view when the Sun rotates on its axis.

When the next generation of solar spacecraft looks more closely at selected parts of the Sun, helioseismologists are sure to make more sensational discoveries. For ESA`s Solar Orbiter, due for launch around 2012, key targets will be regions near the poles.

"Our special chance to detect sub-surface flows near the poles is one of the most exciting aspects of the Solar Orbiter mission," says Bernhard Fleck, ESA`s Project Scientist for SOHO and study scientist for the Solar Orbiter. "We think these hidden streams of gas have a strong influence on the Sun`s magnetic behaviour, and so can affect its storminess."

For astronomers, the Sun is a fairly typical middle-aged star seen in close-up. All the other stars are so far away that asteroseismologists can observe oscillations only of the whole star. However, as with the Sun, these can provide information never available before about the internal make-up of the stars. Much of what astronomers think they know about the Universe`s structure and evolution depends on their understanding of how stars work. Knowing a star`s age is an important part of this study.

Canadian, Danish, and French satellites will pioneer the field in the next few years, probing between them hundreds of stars. ESA`s Eddington spacecraft, due to fly in 2008, will therefore not be the first space mission to study asteroseismology. However, it will go much farther by examining as many as 50 000 stars, from the smallest to the largest, and from the oldest to the youngest, with an accuracy never seen before. For example, previously, if you wanted to state the age of a 100-million-year-old star, you would have to estimate in the range 80 to 120 million years. Eddington allows you to specify it to be almost exactly 104 million years old.

The sound waves in the Sun and the stars are pitched far too low for human beings to hear, but it is fairly simple to convert them to audible frequencies. To listen to the `Song of the Sun`, go the following site: http://soi.stanford.edu/results/sounds.html

Monica Talevi | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>