Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hiding in the noise and chaos

13.08.2002


Communicating with light polarization

A new and novel way of communicating over fiber optics is being developed by physicists supported by the Office of Naval Research. Rather than using the amplitude and frequency of electromagnetic waves, they’re using the polarization of the wave to carry the signal. Such a method offers a novel and elegant method of secure communication over fiber optic lines.

Electromagnetic waves, like light and radio waves, have amplitude (wave height), frequency (how often the wave crests each second), and polarization (the plane in which the wave moves). Changes in amplitude and frequency have long been used to carry information (AM radio uses changes in the amplitude of radio waves; FM radio uses changes in their frequency), but polarization has not been so thoroughly explored.



ONR-supported physicists Gregory VanWiggeren (Georgia Tech) and Rajarshi Roy (University of Maryland) have demonstrated an ingenious method to communicate through fiber optics by using dynamically fluctuating states of light polarization. Unlike previous methods, the state of the light’s polarization is not directly used to encode data. Instead the message (encoded as binary data of the sort used by digital systems) modulates a special kind of laser light. Van Wiggeren and Roy used an erbium-doped fiber ring laser. The erbium amplifies the optical signal, and the ring laser transmits the message. In a ring laser the coherent laser light moves in a ring-shaped path, but the light can also be split from the ring to be transmitted through a fiber optic cable.

The nonlinearities of the optic fiber produce dynamical chaotic variations in the polarization, and the signal is input as a modulation of this naturally occurring chaos. The signal can be kept small relative to the background light amplitude. The light beam is then split, with part of it going through a communications channel to a receiver. The receiver breaks the transmitted signal into two parts. One of these is delayed by about 239 nanoseconds, the time it takes the signal to circulate once around the ring laser. The light received directly is compared, by measuring polarizations, to the time delayed light. Then the chaotic variations are subtracted, which leaves only the signal behind. Variations in stress and temperature on the communications would be equally subtracted out.

"This is quite a clever method, which hides the signal in noise," says ONR science officer Mike Shlesinger, who oversees the research. "It provides a definite advantage over direct encoding of polarization, leaving an eavesdropper only chaotic static, and no means to extract the signal."


###
For more information on the technology, or to interview Mike Shlesinger and his researchers, please contact John Petrik or Gail Cleere at 703-696-5031, or email petrikj@onr.navy.mil or cleereg@onr.navy.mil


Gail S. Cleere | EurekAlert!
Further information:
http://www.onr.navy.mil/

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>