Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes’ fatal attraction triggers galaxies’ change of heart

05.08.2002



Supermassive black holes at the hearts of large galaxies merge when their host galaxies do, say Professor David Merritt of Rutgers University, New Jersey, and Professor Ron Ekers of CSIRO’s Australia Telescope National Facility in Sydney, Australia.

The astronomers make their claim in a paper published online in Science Express on August 1 [U.S. time].

Merritt and Ekers’ model is the strongest evidence to date that the black holes’ mutual attraction ends in an embrace rather than an endless waltz.



Simulations show that when large galaxies merge, interactions between the black holes and stars will make the black holes sink towards the centre of the combined galaxy. But as they approach the centre the black holes will kick out nearby stars, switching off the mechanism that was drawing them together.

"Most astronomers assume that nature finds a way to bring the black holes together, since we don’t see strong evidence of binary black holes at the centres of galaxies," says David Merritt. "We now have solid evidence that the black hole mergers actually take place."

That ’smoking gun’ evidence comes from powerful galaxies that shoot ’jets’ of radio-emitting particles from their cores.

Jets signal the presence of a supermassive black hole, millions or billions of times more massive than the Sun. The jets emerge, not from the black hole itself, but from a disk of gas and dismembered stars whirling around it.

About 7% of these galaxies look like their jets have suddenly changed direction. Jets are aligned with the spin axis of the black hole, astronomers think.

"Flipped jets suggest that the black hole has suddenly been realigned," says Ron Ekers.

Which is just what would happen if two black holes fused, the astronomers say. They show for the first time that even a small black hole can pack quite a punch, knocking another hole up to five times more massive through a large angle.

The idea of black-hole mergers is not new: British cosmologist Martin Rees raised it in a 1978 paper in the journal Nature, for example. But at that time it was too speculative to be taken seriously, Ron Ekers says.

Theorists still can’t explain what draws the black holes together once they have thrown the stars out of their neighbourhood. But when the gulf between the merging holes has shrunk to the size of the solar system, the holes start to radiate away energy as gravity waves, says David Merritt. Then the holes slide inexorably towards fusion, spiralling together faster and faster. Their final clinch releases an enormous burst of gravitational radiation.

The number of radio galaxies with flipped jets, plus the estimated 100-million-year lifetime of the ’radio lobes’ they produce, suggests that these cosmic takeovers happen at the rate of one a year, say Merritt and Ekers. That’s good news for those planning gravity-wave instruments to detect them.

For more information:

Professor David Merritt
Rutgers University
+1-732-445-5742 (office)
merritt@physics.rutgers.edu

Professor Ron Ekers
CSIRO Australia Telescope National Facility
+61-2-6790-4000 (1-2 August only)
0419-146-313 (mobile) or +61-419-146-313 from outside Australia
+61-2-9372-4300 (office, Australia)
Ron.Ekers@csiro.au

Helen Sim, Communications Manager
CSIRO Australia Telescope National Facility
+61-2-9372-4251 (office)
+61-419-635-905 (mobile)
Helen.Sim@csiro.au

Joseph Blumberg, Manager of Science Communications
Rutgers University
+1-732-932-7084 ext. 652 (office)
+1-732-356-3601 (home)
blumberg@ur.rutgers.edu

Rosie Schmedding | EurekAlert!
Further information:
http://www.sciencemag.org/sciencexpress/recent.shtml

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>