Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes’ fatal attraction triggers galaxies’ change of heart

05.08.2002



Supermassive black holes at the hearts of large galaxies merge when their host galaxies do, say Professor David Merritt of Rutgers University, New Jersey, and Professor Ron Ekers of CSIRO’s Australia Telescope National Facility in Sydney, Australia.

The astronomers make their claim in a paper published online in Science Express on August 1 [U.S. time].

Merritt and Ekers’ model is the strongest evidence to date that the black holes’ mutual attraction ends in an embrace rather than an endless waltz.



Simulations show that when large galaxies merge, interactions between the black holes and stars will make the black holes sink towards the centre of the combined galaxy. But as they approach the centre the black holes will kick out nearby stars, switching off the mechanism that was drawing them together.

"Most astronomers assume that nature finds a way to bring the black holes together, since we don’t see strong evidence of binary black holes at the centres of galaxies," says David Merritt. "We now have solid evidence that the black hole mergers actually take place."

That ’smoking gun’ evidence comes from powerful galaxies that shoot ’jets’ of radio-emitting particles from their cores.

Jets signal the presence of a supermassive black hole, millions or billions of times more massive than the Sun. The jets emerge, not from the black hole itself, but from a disk of gas and dismembered stars whirling around it.

About 7% of these galaxies look like their jets have suddenly changed direction. Jets are aligned with the spin axis of the black hole, astronomers think.

"Flipped jets suggest that the black hole has suddenly been realigned," says Ron Ekers.

Which is just what would happen if two black holes fused, the astronomers say. They show for the first time that even a small black hole can pack quite a punch, knocking another hole up to five times more massive through a large angle.

The idea of black-hole mergers is not new: British cosmologist Martin Rees raised it in a 1978 paper in the journal Nature, for example. But at that time it was too speculative to be taken seriously, Ron Ekers says.

Theorists still can’t explain what draws the black holes together once they have thrown the stars out of their neighbourhood. But when the gulf between the merging holes has shrunk to the size of the solar system, the holes start to radiate away energy as gravity waves, says David Merritt. Then the holes slide inexorably towards fusion, spiralling together faster and faster. Their final clinch releases an enormous burst of gravitational radiation.

The number of radio galaxies with flipped jets, plus the estimated 100-million-year lifetime of the ’radio lobes’ they produce, suggests that these cosmic takeovers happen at the rate of one a year, say Merritt and Ekers. That’s good news for those planning gravity-wave instruments to detect them.

For more information:

Professor David Merritt
Rutgers University
+1-732-445-5742 (office)
merritt@physics.rutgers.edu

Professor Ron Ekers
CSIRO Australia Telescope National Facility
+61-2-6790-4000 (1-2 August only)
0419-146-313 (mobile) or +61-419-146-313 from outside Australia
+61-2-9372-4300 (office, Australia)
Ron.Ekers@csiro.au

Helen Sim, Communications Manager
CSIRO Australia Telescope National Facility
+61-2-9372-4251 (office)
+61-419-635-905 (mobile)
Helen.Sim@csiro.au

Joseph Blumberg, Manager of Science Communications
Rutgers University
+1-732-932-7084 ext. 652 (office)
+1-732-356-3601 (home)
blumberg@ur.rutgers.edu

Rosie Schmedding | EurekAlert!
Further information:
http://www.sciencemag.org/sciencexpress/recent.shtml

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>