Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New colossal carbon tubes created, and flipping spins at the speed limit

31.07.2008
Colossal Carbon Tubes leave Kevlar and Nanotubes in the Dust H. Peng, D. Chen, J.-Y. Huang, S. B. Chikkannanavar, J. Hänisch, M. Jain, D. E. Peterson, S. K. Doorn, Y. Lu, Y. T. Zhu, and Q. X. Jia Physical Review Letters (forthcoming)

A collaboration of Chinese and American physicists has discovered a way to make a new carbon structure that could lead to fabrics 30 times stronger than Kevlar and 224 times stronger than cotton. The group dubbed the structures colossal carbon tubes because they're thousands of times larger than carbon nanotubes. At 40-100 millionths of a meter across and centimeters long, they're comparable in size to typical cotton fibers.

The structures consist of nested inner and outer tubes separated by hollow channels, making the tubes both light and strong. While they are nowhere near as strong as carbon nanotubes, the colossal tubes are much more ductile than the nanoscopic variety, making them more suited for spinning into threads and weaving into fabrics. The colossal tubes conduct electricity and show some of the properties of semiconductors, which means that they could lead to novel microelectronic components as well as super strong cloth.

The details regarding how the intricate structures form is still hazy, but the researchers propose that colossal carbon tubes could be incorporated into improved body armor, stronger carbon fiber composites (which are often shaped into parts for high-performance and lightweight vehicles), or components in microelectronics and tiny machines.

Spin Flips Hit the Speed Limit
S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, and H.W. Schumacher Physical Review Letters (forthcoming)

A team of physicists at Physikalisch-Technische Bundesanstalt in Germany has managed to flip a nanoscopic magnet as fast as the fundamental speed limit allows. Their experiment consisted of two stacked layers of tiny magnets separated by a thin barrier to form what is called a magnetic tunnel junction. Such magnetic tunneling junctions are promising candidates for future magnetic memory chips.

The researchers allowed electrons aligned in a special way to flow between the layers, developing a spin torque, or twisting force that is transferred from one layer of nanomagnet onto the other. This torque pumps enough energy to the nanomagnet to make it move faster and faster until it changes direction. Several measurements showed that the researchers were able to switch the direction of magnetization as fast as physically possible.

Their spin torque record is important for the next generation of low current, ultra fast magnetic memory chips and sensors. This new generation of electronics encodes information in an electronic spin, rather than in an electronic charge. The spin torque switching effect is a powerful new approach to controlling electronic spins.

James Riordon | American Physical Society
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>