Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New colossal carbon tubes created, and flipping spins at the speed limit

31.07.2008
Colossal Carbon Tubes leave Kevlar and Nanotubes in the Dust H. Peng, D. Chen, J.-Y. Huang, S. B. Chikkannanavar, J. Hänisch, M. Jain, D. E. Peterson, S. K. Doorn, Y. Lu, Y. T. Zhu, and Q. X. Jia Physical Review Letters (forthcoming)

A collaboration of Chinese and American physicists has discovered a way to make a new carbon structure that could lead to fabrics 30 times stronger than Kevlar and 224 times stronger than cotton. The group dubbed the structures colossal carbon tubes because they're thousands of times larger than carbon nanotubes. At 40-100 millionths of a meter across and centimeters long, they're comparable in size to typical cotton fibers.

The structures consist of nested inner and outer tubes separated by hollow channels, making the tubes both light and strong. While they are nowhere near as strong as carbon nanotubes, the colossal tubes are much more ductile than the nanoscopic variety, making them more suited for spinning into threads and weaving into fabrics. The colossal tubes conduct electricity and show some of the properties of semiconductors, which means that they could lead to novel microelectronic components as well as super strong cloth.

The details regarding how the intricate structures form is still hazy, but the researchers propose that colossal carbon tubes could be incorporated into improved body armor, stronger carbon fiber composites (which are often shaped into parts for high-performance and lightweight vehicles), or components in microelectronics and tiny machines.

Spin Flips Hit the Speed Limit
S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, and H.W. Schumacher Physical Review Letters (forthcoming)

A team of physicists at Physikalisch-Technische Bundesanstalt in Germany has managed to flip a nanoscopic magnet as fast as the fundamental speed limit allows. Their experiment consisted of two stacked layers of tiny magnets separated by a thin barrier to form what is called a magnetic tunnel junction. Such magnetic tunneling junctions are promising candidates for future magnetic memory chips.

The researchers allowed electrons aligned in a special way to flow between the layers, developing a spin torque, or twisting force that is transferred from one layer of nanomagnet onto the other. This torque pumps enough energy to the nanomagnet to make it move faster and faster until it changes direction. Several measurements showed that the researchers were able to switch the direction of magnetization as fast as physically possible.

Their spin torque record is important for the next generation of low current, ultra fast magnetic memory chips and sensors. This new generation of electronics encodes information in an electronic spin, rather than in an electronic charge. The spin torque switching effect is a powerful new approach to controlling electronic spins.

James Riordon | American Physical Society
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>