Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover New Class of Glassy Material

30.07.2008
Scientists at U.S. Department of Energy's Argonne National Laboratory are dealing with an entirely new type of frustration, but it's not stressing them out.

Dynamic frustration has been found to be the cause of glassy behavior in materials that previously had none of the features of a normal glass.

"This has been a puzzle for 10 years now," Argonne physicist Raymond Osborn said.

Conventional wisdom states that glassy materials, such as common window glass, result when frustration prevents the atoms from forming a well-ordered crystal structure, and the material freezes into a disordered state like a frozen liquid.

In spin glasses, it is the magnetic moments on each atom, rather than the atoms themselves, that freeze into a disordered state at low temperatures, so that they point in random directions. However, there has to be some disorder in the atomic structure and some frustration in the magnetic interactions which prevents the magnetic moments from ordering so that they can freeze into spin glasses.

Scientists have struggled for more than a decade to understand why PrAu2Si2 is a spin glass. There is no sign of atomic disorder in the compound and, no reason for the magnetic interactions to be frustrated.

Using the results of neutron scattering experiments, Osborn and his collaborators concluded the frustration results from temporal or dynamic frustration rather static frustration.

Although PrAu2Si2 seems to have an ordered structure, by delving deeper, Osborn found that the magnetic moments are continually fluctuating in magnitude causing the equivalent of temporal potholes that appear and then disappear long enough to disrupt the magnetic alignment.

These fluctuations occur because the magnetic moments in this material are unstable and can be destroyed temporarily by electrons scattering off the atoms.

"The discovery of dynamic frustration reveals a whole new class of glassy materials whose behavior is governed by dynamic rather than static disorder," Osborn said.

This discovery may allow scientists to tune the degree of frustration and therefore develop a better understanding of how glasses are formed in nature.

Funding for this research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The mission of the Basic Energy Sciences (BES) program - a multipurpose, scientific research effort - is to foster and support fundamental research to expand the scientific foundations for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use.

A paper on Osborn's work can be seen in the upcoming edition of Nature Physics.

The U.S. Department of Energy’s Argonne National Laboratory brings the world’s brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline.

Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | Newswise Science News
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>