Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover New Class of Glassy Material

30.07.2008
Scientists at U.S. Department of Energy's Argonne National Laboratory are dealing with an entirely new type of frustration, but it's not stressing them out.

Dynamic frustration has been found to be the cause of glassy behavior in materials that previously had none of the features of a normal glass.

"This has been a puzzle for 10 years now," Argonne physicist Raymond Osborn said.

Conventional wisdom states that glassy materials, such as common window glass, result when frustration prevents the atoms from forming a well-ordered crystal structure, and the material freezes into a disordered state like a frozen liquid.

In spin glasses, it is the magnetic moments on each atom, rather than the atoms themselves, that freeze into a disordered state at low temperatures, so that they point in random directions. However, there has to be some disorder in the atomic structure and some frustration in the magnetic interactions which prevents the magnetic moments from ordering so that they can freeze into spin glasses.

Scientists have struggled for more than a decade to understand why PrAu2Si2 is a spin glass. There is no sign of atomic disorder in the compound and, no reason for the magnetic interactions to be frustrated.

Using the results of neutron scattering experiments, Osborn and his collaborators concluded the frustration results from temporal or dynamic frustration rather static frustration.

Although PrAu2Si2 seems to have an ordered structure, by delving deeper, Osborn found that the magnetic moments are continually fluctuating in magnitude causing the equivalent of temporal potholes that appear and then disappear long enough to disrupt the magnetic alignment.

These fluctuations occur because the magnetic moments in this material are unstable and can be destroyed temporarily by electrons scattering off the atoms.

"The discovery of dynamic frustration reveals a whole new class of glassy materials whose behavior is governed by dynamic rather than static disorder," Osborn said.

This discovery may allow scientists to tune the degree of frustration and therefore develop a better understanding of how glasses are formed in nature.

Funding for this research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The mission of the Basic Energy Sciences (BES) program - a multipurpose, scientific research effort - is to foster and support fundamental research to expand the scientific foundations for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use.

A paper on Osborn's work can be seen in the upcoming edition of Nature Physics.

The U.S. Department of Energy’s Argonne National Laboratory brings the world’s brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline.

Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | Newswise Science News
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>