Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Discover New Class of Glassy Material

Scientists at U.S. Department of Energy's Argonne National Laboratory are dealing with an entirely new type of frustration, but it's not stressing them out.

Dynamic frustration has been found to be the cause of glassy behavior in materials that previously had none of the features of a normal glass.

"This has been a puzzle for 10 years now," Argonne physicist Raymond Osborn said.

Conventional wisdom states that glassy materials, such as common window glass, result when frustration prevents the atoms from forming a well-ordered crystal structure, and the material freezes into a disordered state like a frozen liquid.

In spin glasses, it is the magnetic moments on each atom, rather than the atoms themselves, that freeze into a disordered state at low temperatures, so that they point in random directions. However, there has to be some disorder in the atomic structure and some frustration in the magnetic interactions which prevents the magnetic moments from ordering so that they can freeze into spin glasses.

Scientists have struggled for more than a decade to understand why PrAu2Si2 is a spin glass. There is no sign of atomic disorder in the compound and, no reason for the magnetic interactions to be frustrated.

Using the results of neutron scattering experiments, Osborn and his collaborators concluded the frustration results from temporal or dynamic frustration rather static frustration.

Although PrAu2Si2 seems to have an ordered structure, by delving deeper, Osborn found that the magnetic moments are continually fluctuating in magnitude causing the equivalent of temporal potholes that appear and then disappear long enough to disrupt the magnetic alignment.

These fluctuations occur because the magnetic moments in this material are unstable and can be destroyed temporarily by electrons scattering off the atoms.

"The discovery of dynamic frustration reveals a whole new class of glassy materials whose behavior is governed by dynamic rather than static disorder," Osborn said.

This discovery may allow scientists to tune the degree of frustration and therefore develop a better understanding of how glasses are formed in nature.

Funding for this research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The mission of the Basic Energy Sciences (BES) program - a multipurpose, scientific research effort - is to foster and support fundamental research to expand the scientific foundations for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use.

A paper on Osborn's work can be seen in the upcoming edition of Nature Physics.

The U.S. Department of Energy’s Argonne National Laboratory brings the world’s brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline.

Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>