Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish scientists confirm the existence of electrical activity on Titan

29.07.2008
Physicists from the University of Granada and University of Valencia have developed a procedure for analysing specific data sent by the Huygens probe from Titan, the largest of Saturn's moons, “unequivocally” proving that there is natural electrical activity in its atmosphere.

The scientific community believe that the probability of organic molecules, precursors of life, being formed is higher on planets or moons which have an atmosphere with electrical storms.

The researcher, Juan Antonio Morente, from the Department of Applied Physics at the University of Granada, indicated to SINC that Titan has been considered a “unique world in the solar system” since 1908 when, the Spanish astronomer, José Comas y Solá, discovered that it had an atmosphere, something non-existent on other moons. “On this moon clouds with convective movements are formed and, therefore, static electrical fields and stormy conditions can be produced”, he explained.

“This also considerably increases the possibility of organic and prebiotic molecules being formed, according to the theory of the Russian biochemist Alexander I. Oparín and the experiment of Stanley L. Miller”, which managed to synthesise organic compounds from inorganic compounds through electrical discharges. “That is why Titan has been one of the main objectives of the Cassini-Huygens joint mission of NASA and the European Space Agency”, added the researcher.

Morente indicated that in order to detect natural electrical activity on planets such as Earth or moons such as Titan the so-called “Schumann resonances”, a set of spectrum peaks in the extremely low frequency (ELF) portion of the radio spectrum, are measured. These peaks are produced due to the existence between the ionosphere and the surface of a huge resonant cavity in which electromagnetic fields are confined. They present two basic components: a radial electrical field and a tangential magnetic field, accompanied by a weak tangential electrical field (one hundred times smaller than the radial component).

The electrical field was measured by the mutual impedance probe (MIP), one of the instruments transported by the Huygens probe. The MIP consisted of four electrodes, two transmitters and two receptors, with a transmitter-receptor pair on each one of the probe’s folding arms. The MIP was primarily used for measuring the atmosphere’s electrical conductivity, but between each measurement of this physical magnitude it also acted as a dipolar antenna, measuring the natural electrical field in the atmosphere.

“In a stable fall, without balancing, the MIP would have measured the electrical field’s weak tangential component”, said Morente, “but fortunately a strong wind balanced the probe and the electrodes measured a superposition of that tangential and radial component”.

Despite this, the electrical field spectrums received directly from Huygens did not follow the patterns the scientists expected, as they were relatively flat and no Schumann resonances were observed. However, the team of Spanish researchers did manage to devise a procedure for revealing the hidden Schumann resonances, based on the separation of time signals known as “early” and “late-time”, which made it possible to obtain “irrefutable proof” that natural electrical activity does exist in Titan's atmosphere.

In the work, subsidised by the former Ministry of Education and Science, Government of Andalusia and the European Union, it was also explained that the atmosphere of this one of Saturn’s moon is an electromagnetic medium with high losses, and that its resonant cavity is less ideal than the Earth’s.

| alfa
Further information:
http://www.plataformasinc.es

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>