Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COROT’s new find orbits Sun-like star

25.07.2008
A team of European scientists working with COROT have discovered an exoplanet orbiting a star slightly more massive than the Sun.

After just 555 days in orbit, the mission has now observed more than 50 000 stars and is adding significantly to our knowledge of the fundamental workings of stars.

The latest discovery, COROT-exo-4b is an exoplanet of about the same size as Jupiter. It takes 9.2 days to orbit its star, the longest period for any transiting exoplanet ever found.

The team has found that the star, which is slightly larger than our Sun, is rotating at the same pace as the planet's period of revolution. This is quite a surprise for the team, as the planet is thought to be too low in mass and too distant from its star, for the star to have any major influence on its rotation.

Launched in December 2006, COROT is the first space-based mission designed to search for exoplanets. Located outside Earth's atmosphere, the satellite is designed to detect rocky exoplanets almost as small as Earth. The satellite uses transits, the tiny dips in the light output from a star when a planet passes in front of it, to detect and study planets. This is followed up by extensive ground-based observations.

Monitoring COROT-exo-4b continuously over several months, the team tracked variations in its brightness between transits. They derived its period of rotation by monitoring dark spots on its surface that rotated in and out of view.

It is not known whether COROT-exo-4b and its star have always been rotating in sync since their formation about 1000 million years ago, or if the star’s rotation synchronized later. Studying such systems with COROT will help scientists gain valuable insight into star-planet interactions.

This is the first transiting exoplanet found with such a peculiar combination of mass and period of rotation. There is surely something special about how it formed and evolved.

Malcolm Fridlund | alfa
Further information:
http://www.esa.int/
http://www.esa.int/SPECIALS/COROT/SEMSIFXIPIF_0.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>