Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Ikerbasque researcher at the University of the Basque Country disentangles the strange behaviour of qubits

25.07.2008
Current technology enables the building of electrical circuits similar to those we use at home but reduced thousands of times in size to a micrometric scale of thousandths of a millimetre.

When these circuits are built of superconductor materials and at near-absolute zero cryogenic temperatures, the world of everyday physics is left behind and the amazing world of quantum physics is entered. In this circuit the behaviour is something like an artificial atom (i.e. like the so-called quantum bits (“qubits”) of quantum computers) and the concepts of quantum optics, quantum information and condensed matter are mixed.

An Ikerbasque researcher, ascribed to the University of the Basque Country (UPV/EHU), Enrique Solano, together with colleagues from Germany and Japan, have been working on an experiment and a theoretical model that show that certain quantum leaps are prohibited at times between levels of a qubit superconductor. This phenomenon is produced on sending photons of light with sufficient energy against a qubit installed within a circuit that simulates the behaviour of microwaves, similar to the ovens commonly used domestically but at a micrometric scale. The research has been published in the prestigious Nature Physics journal under the title, ‘Two-photon probe of the Jaynes-Cummings model and Controlled Symmetry Breaking in Circuit QED’. The article may be consulted on-line and will be included in the next print issue of the journal.

To explain this in an easy way, let us go back to our household circuit where, as with any such circuit, sufficient energy has to be supplied in order to move electrons from one place to another, i.e. the required voltage has to be applied. In an atomic circuit, however, the required energy is supplied through photons of light but this is not sufficient to produce the famous quantum jumps between two atomic energy levels. The additional required factor is the presence of the symmetry of the qubit, an enhancing factor, as it were.

It is as if it were not enough for the quantum nature to have the required energy and it requires, moreover, the presence of the qubit to enable – or otherwise – the quantum leaps stimulated by the photons of light energy. If the qubit presents itself with symmetrical potential, the jump is prohibited and is not produced; curiously, if the potential is asymmetric, the quantum leap is permitted. This strange behaviour has been demonstrated by these researchers both at a theoretical level and in the laboratory, where the rules of prohibition may be activated and deactivated at will.

This research is an important step in the thorough understanding of the quantum jumps permitted and prohibited in superconductor circuits, as well as in the potential application of the electrodynamic quantum of circuits to future technology in quantum computation and information.

Enrique Solano is a PhD in Physics from the Federal University of Río de Janeiro. After working at the Ludwig-Maximilian University in Munich, he has been carrying out his research over the last few months at the UPV/EHU thanks to an agreement between the University and the Ikerbasque Foundation.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1830&hizk=I

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>