Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching a 'New Star' Make the Universe Dusty

25.07.2008
VLTI observes for the first time how dust forms around an erupting star

Using ESO's Very Large Telescope Interferometer, and its remarkable acuity, astronomers were able for the first time to witness the appearance of a shell of dusty gas around a star that had just erupted, and follow its evolution for more than 100 days. This provides the astronomers with a new way to estimate the distance of this object and obtain invaluable information on the operating mode of stellar vampires, dense stars that suck material from a companion.

Although novae were first thought to be new stars appearing in the sky, hence their Latin name, they are now understood as signaling the brightening of a small, dense star. Novae occur in double star systems comprising a white dwarf - the end product of a solar-like star - and, generally, a low-mass normal star - a red dwarf. The two stars are so close together that the red dwarf cannot hold itself together and loses mass to its companion. Occasionally, the shell of matter that has fallen onto the ingesting star becomes unstable, leading to a thermonuclear explosion which makes the system brighter.

Nova Scorpii 2007a (or V1280 Scorpii), was discovered by Japanese amateur astronomers on 4 February 2007 towards the constellation Scorpius ("the Scorpion"). For a few days, it became brighter and brighter, reaching its maximum on 17 February, to become one of the brightest novae of the last 35 years. At that time, it was easily visible with the unaided eye.

Eleven days after reaching its maximum, astronomers witnessed the formation of dust around the object. Dust was present for more than 200 days, as the nova only slowly emerged from the smoke between October and November 2007. During these 200 days, the erupting source was screened out efficiently, becoming more than 10,000 times dimmer in the visual.

An unprecedented high spatial resolution monitoring of the dust formation event was carried out with the Very Large Telescope Interferometer (VLTI), extending over more than 5 months following the discovery. The astronomers first used the AMBER near-infrared instrument, then, as the nova continued to produce dust at a high rate, they moved to using the MIDI mid-infrared instrument, that is more sensitive to the radiation of the hot dust. Similarly, as the nova became fainter, the astronomers switched from the 1.8-m Auxiliary Telescopes to their larger brethren, the 8.2-m Unit Telescopes. With the interferometry mode, the resolution obtained is equivalent to using a telescope with a size between 35 and 71 metres (the distance between the 2 telescopes used).

The first observations, secured 23 days after the discovery, showed that the source was very compact, less than 1 thousandth of an arcsecond (1 milli-arcsecond or mas), which is a size comparable to viewing one grain of sand from about 100 kilometres away. A few days later, after the detection of the major dust formation event, the source measured 13 mas.

"It is most likely that the latter size corresponds to the diameter of the dust shell in expansion, while the size previously measured was an upper limit of the erupting source," explains lead author Olivier Chesneau. Over the following months the dusty shell expanded regularly, at a rate close to 2 million km/h.

"This is the first time that the dust shell of a nova is spatially resolved and its evolution traced starting from the onset of its formation up to the point that it becomes too diluted to be seen", says co-author Dipankar Banerjee, from India.

The measurement of the angular expansion rate, together with the knowledge of the expansion velocity, enables the astronomer to derive the distance of the object, in this case about 5500 light-years.

"This is a new and promising technique for providing distances of close novae. This was made possible because the state of the art facility of the VLTI, both in terms of infrastructure and management of the observations, allows one to schedule such observations," says co-author Markus Wittkowski from ESO.

Moreover, the quality of the data provided by the VLTI was such that it was possible to estimate the daily production of dust and infer the total mass ejected. "Overall, V1280 Sco probably ejected more than the equivalent of 33 times the mass of the Earth, a rather impressive feat if one considers that this mass was ejected from a star not larger in radius than the Earth," concludes Chesneau. Of this material, about a percent or less was in the form of dust.

Henri Boffin | alfa
Further information:
http://www.eso.org
http://www.eso.org/public/outreach/press-rel/pr-2008/pr-22-08.html

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>