Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching a 'New Star' Make the Universe Dusty

25.07.2008
VLTI observes for the first time how dust forms around an erupting star

Using ESO's Very Large Telescope Interferometer, and its remarkable acuity, astronomers were able for the first time to witness the appearance of a shell of dusty gas around a star that had just erupted, and follow its evolution for more than 100 days. This provides the astronomers with a new way to estimate the distance of this object and obtain invaluable information on the operating mode of stellar vampires, dense stars that suck material from a companion.

Although novae were first thought to be new stars appearing in the sky, hence their Latin name, they are now understood as signaling the brightening of a small, dense star. Novae occur in double star systems comprising a white dwarf - the end product of a solar-like star - and, generally, a low-mass normal star - a red dwarf. The two stars are so close together that the red dwarf cannot hold itself together and loses mass to its companion. Occasionally, the shell of matter that has fallen onto the ingesting star becomes unstable, leading to a thermonuclear explosion which makes the system brighter.

Nova Scorpii 2007a (or V1280 Scorpii), was discovered by Japanese amateur astronomers on 4 February 2007 towards the constellation Scorpius ("the Scorpion"). For a few days, it became brighter and brighter, reaching its maximum on 17 February, to become one of the brightest novae of the last 35 years. At that time, it was easily visible with the unaided eye.

Eleven days after reaching its maximum, astronomers witnessed the formation of dust around the object. Dust was present for more than 200 days, as the nova only slowly emerged from the smoke between October and November 2007. During these 200 days, the erupting source was screened out efficiently, becoming more than 10,000 times dimmer in the visual.

An unprecedented high spatial resolution monitoring of the dust formation event was carried out with the Very Large Telescope Interferometer (VLTI), extending over more than 5 months following the discovery. The astronomers first used the AMBER near-infrared instrument, then, as the nova continued to produce dust at a high rate, they moved to using the MIDI mid-infrared instrument, that is more sensitive to the radiation of the hot dust. Similarly, as the nova became fainter, the astronomers switched from the 1.8-m Auxiliary Telescopes to their larger brethren, the 8.2-m Unit Telescopes. With the interferometry mode, the resolution obtained is equivalent to using a telescope with a size between 35 and 71 metres (the distance between the 2 telescopes used).

The first observations, secured 23 days after the discovery, showed that the source was very compact, less than 1 thousandth of an arcsecond (1 milli-arcsecond or mas), which is a size comparable to viewing one grain of sand from about 100 kilometres away. A few days later, after the detection of the major dust formation event, the source measured 13 mas.

"It is most likely that the latter size corresponds to the diameter of the dust shell in expansion, while the size previously measured was an upper limit of the erupting source," explains lead author Olivier Chesneau. Over the following months the dusty shell expanded regularly, at a rate close to 2 million km/h.

"This is the first time that the dust shell of a nova is spatially resolved and its evolution traced starting from the onset of its formation up to the point that it becomes too diluted to be seen", says co-author Dipankar Banerjee, from India.

The measurement of the angular expansion rate, together with the knowledge of the expansion velocity, enables the astronomer to derive the distance of the object, in this case about 5500 light-years.

"This is a new and promising technique for providing distances of close novae. This was made possible because the state of the art facility of the VLTI, both in terms of infrastructure and management of the observations, allows one to schedule such observations," says co-author Markus Wittkowski from ESO.

Moreover, the quality of the data provided by the VLTI was such that it was possible to estimate the daily production of dust and infer the total mass ejected. "Overall, V1280 Sco probably ejected more than the equivalent of 33 times the mass of the Earth, a rather impressive feat if one considers that this mass was ejected from a star not larger in radius than the Earth," concludes Chesneau. Of this material, about a percent or less was in the form of dust.

Henri Boffin | alfa
Further information:
http://www.eso.org
http://www.eso.org/public/outreach/press-rel/pr-2008/pr-22-08.html

More articles from Physics and Astronomy:

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

nachricht Los Alamos researchers and supercomputers help interpret the latest LIGO findings
18.10.2017 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>