Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lenses galore - Hubble finds large sample of very distant galaxies

25.07.2008
By using the gravitational magnification from six massive lensing galaxy clusters, the NASA/ESA Hubble Space Telescope has provided scientists with the largest sample of very distant galaxies seen to date.

Some of the newly found magnified objects are dimmer than the faintest ones seen in the legendary Hubble Ultra Deep Field, which is usually considered the deepest image of the Universe.

By combining both visible and near-infrared observations from Hubble’s Advanced Camera for Surveys (ACS) and Near Infrared Camera and Multi-Object Spectrometer (NICMOS), scientists searched for galaxies that are only visible in near-infrared light. They uncovered 10 candidates believed to lie about 13 billion light-years away (a redshift of approximately 7.5), which means that the light gathered was emitted by the stars when the Universe was still very young — a mere 700 million years old.

“These candidates could well explain one of the big puzzles plaguing astronomy today. We know that the Universe was reionised within the first 5-600 million years after the Big Bang, but we don’t know if the ionising energy came from a smaller number of big galaxies or a more plentiful population of tiny ones”, said Johan Richard, from the California Institute of Technology. The relatively high number of redshift 7.5 galaxies claimed in this survey suggests that most of the ionising energy was produced by dim and abundant galaxies rather than large, scarce ones.

“The challenge for astronomers is that galaxies beyond a distance of 13 billion light-years (past a redshift of 7) are exceedingly faint and are only visible in the near-infrared — just at the limit of what Hubble can observe” explained Jean-Paul Kneib from the Laboratoire d’astrophysique de Marseille. This new result was only made possible with some cosmic assistance in the form of gravitational lensing that magnified the light from the distant galaxies enough for Hubble to detect them. A firm confirmation of their distance was beyond even the capabilities of the 10-meter Keck telescope and must await powerful future ground-based telescopes.

First confirmed in 1979, gravitational lenses were predicted by Albert Einstein’s theory of General Relativity, a theory that allows astronomers to calculate the path of starlight as it moves through curved space-time. According to the theory, the bending of light is brought about by the presence of matter in the Universe, which causes the fabric of space-time to warp and curve.

Gravitational lensing is the result of this warping of spacetime and is mainly detected around very massive galaxy clusters. Due to the gravitational effect of both the cluster’s observable matter and hidden dark matter, the light is bent around the cluster. This bending of light allows the clusters in certain places to act as natural gravitational telescopes that give the light of faint and faraway objects a boost.

Where Earth-bound telescopes fail to detect such faint and distant objects due to the blurring introduced by the Earth’s atmosphere, a combination of Hubble’s location in space and the magnification of the gravitation lenses provides astronomers with a birds-eye view of these elusive objects.

This technique has already been used numerous times by Hubble and has helped astronomers to find and study many of the most distant known galaxies.

Lars Christensen | alfa
Further information:
http://www.eso.org
http://www.spacetelescope.org/news/html/heic0814.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>