Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GOCE prepares for shipment to Russia

24.07.2008
Launching in just two months' time, GOCE – now fully reconfigured for launch in September, is currently being prepared for shipment on 29 July 2008 from ESA's test facilities in the Netherlands to the Plesetsk Cosmodrome in northern Russia.

Originally, the Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission had been scheduled for launch in May 2008, but as a result of precautionary measures taken following a problem with an upper-stage section of a Russian Proton launcher, the launch date was postponed until 10 September 2008. Consequently, the satellite had to be reconfigured for a so-called 'summer launch configuration'.

Since the GOCE gravity mission is designed to fly at a particularly low altitude of just 263 km and at a slight inclination with respect to an exact polar orbit, the satellite goes into the shadow of the Earth during polar nights for 28 minutes 135 days each year.

By going into the Earth’s shadow where no sun hits the satellite, GOCE experiences changes in temperature that could potentially affect measurements. Not knowing exactly when GOCE would launch, the option to choose whether it went into Earth’s shadow, referred to as an ‘eclipse period’, between October and February or between April and August was included in its design.

The choice between these two options is made by either launching into a northward equator crossing at 06:00 or at 18:00. The main difference between the launch times – as seen from the Sun – is that it determines whether the satellite flies clockwise or anticlockwise around the Earth.

Since GOCE will launch in September, the preferred eclipse period is April to August because it allows unaffected commissioning and science operations until April next year.

Over the last two months the satellite has been successfully reconfigured and fully tested and is now in the process of being prepared for its journey from ESA-ESTEC to the launch site in Russia.

On the morning of 29 July a container holding the GOCE satellite, along with six other containers carrying a whole host of support equipment, will be loaded onto trucks and taken to Schiphol Airport near Amsterdam in the Netherlands.

Once aboard an Antonov cargo aircraft, the shipment will be flown to Arkhangelsk, Russia, where the container will be transferred to a train for the rest of the journey to the Plesetsk Cosmodrome. Additional support equipment is being transported by ship to the launch site on 21 July from Antwerp, Belgium.

After the satellite is unpacked, a final check will be carried out before being mounted onto its Rockot launch vehicle 13 days prior to launch.

Once launched and commissioned, GOCE will map global variations in the gravity field with extreme detail and accuracy. This will result in a unique model of the geoid, which is the surface of equal gravitational potential defined by the gravity field – crucial for deriving accurate measurements of ocean circulation and sea-level change, both of which are affected by climate change.

GOCE-derived data is also much needed to understand more about processes occurring inside the Earth and for use in practical applications such as surveying and levelling.

Robert Meisner | alfa
Further information:
http://www.esa.int/
http://www.esa.int/esaEO/SEMX13THKHF_index_0.html

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>