Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GOCE prepares for shipment to Russia

24.07.2008
Launching in just two months' time, GOCE – now fully reconfigured for launch in September, is currently being prepared for shipment on 29 July 2008 from ESA's test facilities in the Netherlands to the Plesetsk Cosmodrome in northern Russia.

Originally, the Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission had been scheduled for launch in May 2008, but as a result of precautionary measures taken following a problem with an upper-stage section of a Russian Proton launcher, the launch date was postponed until 10 September 2008. Consequently, the satellite had to be reconfigured for a so-called 'summer launch configuration'.

Since the GOCE gravity mission is designed to fly at a particularly low altitude of just 263 km and at a slight inclination with respect to an exact polar orbit, the satellite goes into the shadow of the Earth during polar nights for 28 minutes 135 days each year.

By going into the Earth’s shadow where no sun hits the satellite, GOCE experiences changes in temperature that could potentially affect measurements. Not knowing exactly when GOCE would launch, the option to choose whether it went into Earth’s shadow, referred to as an ‘eclipse period’, between October and February or between April and August was included in its design.

The choice between these two options is made by either launching into a northward equator crossing at 06:00 or at 18:00. The main difference between the launch times – as seen from the Sun – is that it determines whether the satellite flies clockwise or anticlockwise around the Earth.

Since GOCE will launch in September, the preferred eclipse period is April to August because it allows unaffected commissioning and science operations until April next year.

Over the last two months the satellite has been successfully reconfigured and fully tested and is now in the process of being prepared for its journey from ESA-ESTEC to the launch site in Russia.

On the morning of 29 July a container holding the GOCE satellite, along with six other containers carrying a whole host of support equipment, will be loaded onto trucks and taken to Schiphol Airport near Amsterdam in the Netherlands.

Once aboard an Antonov cargo aircraft, the shipment will be flown to Arkhangelsk, Russia, where the container will be transferred to a train for the rest of the journey to the Plesetsk Cosmodrome. Additional support equipment is being transported by ship to the launch site on 21 July from Antwerp, Belgium.

After the satellite is unpacked, a final check will be carried out before being mounted onto its Rockot launch vehicle 13 days prior to launch.

Once launched and commissioned, GOCE will map global variations in the gravity field with extreme detail and accuracy. This will result in a unique model of the geoid, which is the surface of equal gravitational potential defined by the gravity field – crucial for deriving accurate measurements of ocean circulation and sea-level change, both of which are affected by climate change.

GOCE-derived data is also much needed to understand more about processes occurring inside the Earth and for use in practical applications such as surveying and levelling.

Robert Meisner | alfa
Further information:
http://www.esa.int/
http://www.esa.int/esaEO/SEMX13THKHF_index_0.html

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>