Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shielding for ambitious neutron experiment

24.07.2008
PTB expertise supports research for better understanding of antimaterial

In science fiction stories it is either the inexhaustible energy source of the future or a superweapon of galactic magnitude: antimaterial. In fact, antimaterial can neither be found on Earth nor in space, is extremely complex to produce and thus difficult to study.

In order to nevertheless track down the origin of material and antimaterial in the universe, a European research group is measuring the power of the electrical dipole moment of neutrons, which represents a measure for the different physical properties of material and antimaterial. The prerequisite for further, still more accurate measurements is a perfect insulation against electrical and magnetic radiation from the environment.

Magnetically soft mumetal serves as a material of the new shielding - the design, testing and set-up of which the Physikalisch-Technische Bundesanstalt is responsible.

Neutrons are electrically neutral particles, when observed externally. As the neutron contains both positively and negatively charged quarks, it would be conceivable that there exist equally large positive and negative charges at a minimal spatial distance from one another in its interior. The neutron would then be an electrical dipole with two oppositely charged poles.

At the Institut Laue-Langevin (ILL) in Grenoble, a European research group is attempting to measure the magnitude of the electrical dipole moment of neutrons (nEDM) with high accuracy. In these experiments, the behaviour of extremely slow neutrons, so-called ultra cold neutrons (or abbreviated as UCN), is investigated in magnetic and electrical fields. Due to the fact that neutrons possess a spin and thus have a magnetic moment, they are also subject to electromagnetic interaction. If an additional electrical field is applied, the neutron, if it possesses an electrical dipole moment, would have to slightly change its properties in a magnetic field.

So far, experiments have shown no sign that would indicate an appreciable electrical dipole moment. Due to the fundamental physical significance it is interesting, however, to further restrict the magnitude of the possible electrical dipole moment. The electrical dipole moment of the neutron is namely a measure of how strongly matter and anti matter differ from one another in their physical properties. In order to significantly improve the measurement uncertainty, a new setting up of the experiment at the Paul Scherrer Institut (PSI) with a stronger UCN source and a better magnetic shielding is planned.

As valuable know-how has been collected at the PTB during the assembly of the best-shielded magnetic cabin worldwide, this expertise is now to be used for the construction, testing and assembly of the new shielding of the neutron experiment. The measuring systems available at PTB will be used for the preliminary investigation of facility components. Of particular importance is the expertise at PTB for detecting even the slightest magnetic impurities.

Imke Frischmuth | alfa
Further information:
http://www.ptb.de
http://www.ptb.de/en/publikationen/blickpunkt/_biomagnetismus.html
http://nedm.web.psi.ch

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

Innovative autonomous system for identifying schools of fish

20.06.2018 | Information Technology

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>