Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix prepares for next sample

24.07.2008
The latest activities of NASA's Phoenix Mars Lander have moved the mission closer to analyzing a sample of material, possibly icy soil, from a hard layer at the bottom of a shallow trench beside the lander.

Overnight Tuesday to Wednesday, during Phoenix's 57th Martian day, or sol, since landing, Phoenix used its robotic arm to scrape the top of the hard layer in the trench informally named "Snow White."

The Phoenix team prepared commands to send to the spacecraft Wednesday telling it to take color stereo images minutes after each of five more rounds of scraping during Sol 58.

"We are monitoring changes between the scrapes," said Doug Ming of NASA Johnson Space Center, Houston, the team's science lead for Sol 58 plans. "It appears that there is fairly rapid sublimation of some of the ice after scraping exposes fresh material, leaving a thin layer of soil particles that had been mixed with the ice. There's a color change from darker to bluer to redder. We want to characterize that on Sol 58 to know what to expect when we scrape just before collecting the next sample."

Within a few sols, the team plans to collect a sample from the hard layer of Snow White for delivery to one of the eight ovens of Phoenix's Thermal and Evolved-Gas Analyzer (TEGA). Doors to the oven have been opened to receive the sample.

The TEGA completed one checkout during Sol 57. Another preparation step by the instrument, a heater characterization, is planned for Sol 58, to verify that pressure sensors can be warmed enough to operate properly early in the Mars morning.

"For the next sample, we will be operating the instrument earlier in the morning than we have before," said William Boynton of the University of Arizona, lead scientist for TEGA. "It will be almost the coldest part of the day, because we want to collect the sample cold and deliver it cold."

On the day when Phoenix will deliver the next sample to TEGA, the team plans to have lander activities begin about three hours earlier than the usual start time of about 9 a.m. local solar time.

One set of imaging commands developed for use on Sol 58 or soon afterwards will check a northwestern portion of the horizon repeatedly during early afternoon to see whether any dust devils can be seen. This will be the first systematic check by Phoenix for dust devils. Similar imaging sequences have observed dust devils near NASA's Mars Rover Spirit, south of Mars' equator.

Students from Boulder Creek High School, Anthem, Ariz., worked with Phoenix team members to plan the first monitoring for dust devils by the lander's Surface Stereo Imager. They and students from SciTech High School, San Diego, are interns at the Phoenix mission's Science Operations Center in Tucson this week, part of a series of internship visits from 12 schools this summer by schools in Arizona, Arkansas, California, Iowa, Massachusetts, New Hampshire, Pennsylvania and Texas.

The Phoenix mission is led by Peter Smith of the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute. For more about Phoenix, visit: http://www.nasa.gov/phoenix and http://phoenix.lpl.arizona.edu.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu.

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>