Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Kind of MRI Enables Study of Magnets for Computer Memory

17.07.2008
What is there to see inside a magnet that's smaller than the head of a pin?

Quite a lot, say physicists who've invented a new kind of MRI technique to do just that.

The technique may eventually enable the development of extremely small computers, and even give doctors a new tool for studying the plaques in blood vessels that play a role in diseases such as heart disease.

In a recent issue of Physical Review Letters, the scientists report the first-ever magnetic resonance image of the inside of an extremely tiny magnet.

Specifically, the magnet is a "ferromagnet" -- a magnet made of ferrous metal such as iron. It's what most people think of when they hear the word "magnet."

"The magnets we study are basically the same as a refrigerator magnet, only much smaller," said project leader Chris Hammel, Ohio Eminent Scholar in Experimental Physics at Ohio State University. The disk-shaped magnets in this study measured only two micrometers (millionths of a meter) across.

"Because ferromagnets generate such strong magnetic fields, we can't study them with typical MRI. A related technique, ferromagnetic resonance, or FMR, would work, but it's not sensitive enough to study individual magnets that are this small."

Likewise, medical researchers can't use MRI to image plaques formed in the body, because plaques are too small. That's why this new kind of magnetic resonance could eventually become a tool for biomedical research.

The technique combines three different kinds of technology: MRI, FMR, and atomic force microscopy.

They dubbed the technique "scanned probe ferromagnetic resonance force microscopy," or scanned probe FMRFM, and it involves detecting a magnetic signal using a tiny silicon bar with an even tinier magnetic probe on its tip.

As the probe passes over a material, it captures a bowl-shaped image: a curved cross-section of an object. The magnetic signal is more intense in the middle (the "bottom" of the bowl), and fades away toward the edges.

It may sound like an odd configuration, but that's why the new technique works.

Every atom emits radio waves at a particular frequency. But to know where those atoms are, scientists need to be able to localize where the radio waves are coming from.

Large-scale MRI machines, such as those in hospitals, get around this problem by varying the magnetic field by precise amounts as it sweeps over an object. The computer controlling the MRI knows that where the magnetic field equals X, the location equals Y. Sophisticated software combines the data, and doctors get a 3D view inside a patient's body.

For Hammel's tiny magnets, no methods were previously known that would image the inside of them, much less allow for precise localization. But since the new probe system generates a magnetic field that varies naturally, the physicists discovered that they could sweep the probe over an array of magnets and get a 2D view that's similar to a medical MRI. In Physical Review Letters, they reported an image resolution of 250 nanometers (billionths of a meter).

Now that they have their imaging technique, Hammel and his team are beginning to record the properties of many different kinds of tiny magnets -- a critical first step toward developing them for computer memory.

Experts believe that one day, tiny magnets could be implanted on a computer's central processing unit (CPU) chip. Because system data could be recorded on the magnets, such a computer would never need to boot up. It would also be very small; essentially, the entire computer would be contained in the CPU.

For biomedical research, the technique could be used to study tissue samples taken from plaques that form in brain tissues and arteries in the body. Many diseases are associated with plaques, including Alzheimer's and atherosclerosis. Currently, researchers are trying to study the structure of plaques in detail to understand how they form and how they affect conventional MRI images.

Hammel and his team hope to contribute to the development of an instrument that could be sold and used routinely in laboratories. But the technique needs some further development before it could become an everyday tool for the computer industry or for biomedicine.

Hammel's Ohio State coauthors on the paper include Yuri Obukhov, a research associate; Thomas Gramila, associate professor of physics; Denis Pelekhov, a research scientist in the university's Institute for Materials Research; Palash Banerjee, a postdoctoral researcher; and Jongjoo Kim and Sanghun An, both doctoral students. They collaborated with Ivar Martin, Evgueni Nazaretski and Roman Movshovich of Los Alamos National Laboratory; and Sharat Batra of Seagate Research, the research and development center of hard drive manufacturer Seagate Technologies.

This work was funded by the Department of Energy.

Contact: P. Chris Hammel, (614) 247-6928; Hammel.7@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>