Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Phoenix Mars Lander Extending Trench

16.07.2008
NASA's Phoenix Mars Lander is using its Robotic Arm to enlarge an exposure of hard subsurface material expected to yield a sample of ice-rich soil for analysis in one of the lander's ovens.

The trench was about 20 by 30 centimeters (8 by 12 inches) after work by the arm on Saturday. The team sent commands yesterday to extend the longer dimension by about 15 centimeters (6 inches).

Experiments with a near-duplicate of the lander in Tucson during the past week indicate that the bigger surface is needed to allow steps planned for collecting an icy sample from the Martian trench informally named "Snow White."

"Right now, there is not enough real estate of dark icy soil in the trench to do a sample acquisition test and later a full-up acquisition" for the Thermal and Evolved-Gas Analyzer, said Ray Arvidson, Phoenix's "dig czar," from Washington University in St. Louis. The arm's rasp will kick the icy soil into the scoop through a special capture mechanism, and scientists also want to scoop up any loose material left in the trench from the rasping activity, Arvidson said.

Samples of shallower, non-icy soil from the Snow White trench have already been examined in Phoenix's wet chemistry laboratory and optical microscope, and a fork-like probe has checked how well nearby soil conducts electricity and heat.

"The Phoenix science team is working diligently to analyze the results of the tests from these various instruments," said Phoenix principal investigator Peter Smith of The University of Arizona. "The preliminary signatures we are seeing are intriguing. Before we release results, we want to verify that our interpretations are correct by conducting laboratory tests."

As the Robotic Arm was extracting the fork-like conductivity probe from the soil on Saturday, the arm contacted a rock called "Alice," near the "Snow White"

trenching area. The arm is programmed to stop activity when it encounters an obstacle. The team assessed the arm's status on Sunday and decided to resume use of the arm on Monday. Yesterday's commands called for the Robotic Arm to move away from the rock, dump out soil that is in the scoop and extend the Snow White trench approximately 15 centimeters (6 inches) toward the lander.

The Phoenix mission is led by Smith of the UA with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute. For more about Phoenix, visit: http://www.nasa.gov/phoenix and http://phoenix.lpl.arizona.edu.

MEDIA CONTACTS:

Guy Webster, Jet Propulsion Laboratory
(818-354-6278; guy.webster@jpl.nasa.gov)
Sara Hammond, University of Arizona
(520-626-1974; shammond@lpl.arizona.edu)
J.D. Harrington, NASA Headquarters
(202-358-5241; j.d.harrington@nasa.gov)

Lori Stiles | University of Arizona
Further information:
http://www.nasa.gov/phoenix
http://phoenix.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>