Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-sized Electronic Circuit Promises Bright View of Early Universe

15.07.2008
A newly developed nano-sized electronic device is an important step toward helping astronomers see invisible light dating from the creation of the universe. This invisible light makes up 98% of the light emitted since the “big bang,” and may provide insights into the earliest stages of star and galaxy formation almost 14 billion years ago.

The tiny, new circuit, developed by physicsts at Rutgers University, NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and the State University of New York at Buffalo, is 100 times smaller than the thickness of a human hair. It is sensitive to faint traces of light in the far-infrared spectrum (longest of the infrared wavelengths), well beyond the colors humans see.

“In the expanding universe, the earliest stars move away from us at a speed approaching the speed of light,” said Michael Gershenson, professor of physics at Rutgers and one of the lead investigators. “As a result, their light is strongly red-shifted when it reaches us, appearing infrared.”

Because the Earth’s atmosphere strongly absorbs far-infrared light, Earth-based radiotelescopes cannot detect the very faint light emitted by these stars. So scientists are proposing a new generation of space telescopes to gather this light. Yet to take full advantage of space-borne telescopes, detectors that capture the light will have to be far more sensitive than any that exist today.

Detectors of infrared and submillimeter waves, known as bolometers, measure the heat generated when they absorb photons, or units of light. Today’s infrared bolometer technology is mature and has reached the limit of its performance.

“The device we built, which we call a hot-electron nanobolometer, is potentially 100 times more sensitive than existing bolometers,” Gershenson said. “It is also faster to react to the light that hits it.”

The research team is publishing a description of the experimental device in an upcoming issue of the journal Nature Nanotechnology. The journal’s website posted an electronic copy of the paper this week at: http://dx.doi.org/10.1038/nnano.2008.173. The team is led by Gershenson and Boris Karasik of the Jet Propulsion Laboratory (JPL), a NASA center managed by the California Institute of Technology (CalTech). Most of the fabrication and measurement work was done at Rutgers by graduate student Jian Wei, now a post-doctoral associate at the Northwestern University; postdoctoral researcher David Olaya, now with the National Institute of Standards and Technology; and postdoctoral researcher Sergey Pereverzev, now with JPL and CalTech. The theoretical support for this research was provided by Andrei Sergeev of the State University of New York at Buffalo.

Made of titanium and niobium metals, the novel device is about 500 nanometers long and 100 nanometers wide. The physicists built it using thin-film and nanolithography techniques similar to those used in computer chip fabrication. The device operates at very cold temperatures – about 459 degrees below zero Fahrenheit, or one-tenth of one degree above absolute zero on the Kelvin scale.

Photons striking the nanodetector heat electrons in the titanium section, which is thermally isolated from the environment by superconducting niobium leads. By detecting the infinitesimal amount of heat generated in the titanium section, one can measure the light energy absorbed by the detector. The device can detect as little as a single photon of far infrared light.

“With this single detector, we have demonstrated a proof of concept,” said Gershenson. “The final goal is to build and test an array of 100 by 100 photodetectors, which is a very difficult engineering job.” Rutgers took the lead on fabrication and electrical characterization of the single detector, and JPL will take the lead on the optical characterization of the detector and developing detector arrays.

Gershenson expects the detector technology to be useful for exploring the early universe when satellite-based far-infrared telescopes start flying 10 to 20 years from now. “That will make our new technology useful for examining stars and star clusters at the farthest reaches of the universe,” he said.

Contact: Carl Blesch
732-932-7084, ext. 616
E-mail: cblesch@ur.rutgers.edu

Carl Blesch | EurekAlert!
Further information:
http://dx.doi.org/10.1038/nnano.2008.173
http://www.rutgers.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>