Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC reduces cost of double patterning lithography

15.07.2008
IMEC, in collaboration with JSR Corporation, realized a simplified process using only one etch step to reduce the cost of double patterning.

32nm lines and spaces were printed with a double exposure/single etch process, effectively freezing the resist after the first exposure. This simplified process paves the way for an industrial take-up of double patterning for the 32nm technology node.

Double patterning will be the primary lithography candidate for the 32nm technology node. But when using two litho and two etch steps, this technique will be expensive and slow. Therefore, IMEC is developing alternative process flows that reduce the cost-of-ownership by eliminating the intermediate etch step and replacing it with a process step in the litho track.

One way to eliminate the extra etch step is through freezing the resist after the first exposure. With this technique, IMEC has demonstrated 32nm node logic patterning. The freezing material used to reach this result has been developed by JSR Corporation. It prevents the resist from expanding (i.e. CD growth) or shrinking. And when the second resist layer is added, the two do not interact. Also, the freezing material is compatible with the lithography hardware.

The step of freezing the resist is done in the litho track. After exposing the first pattern, the resist is coated with the freezing material. Next, the wafer is baked to freeze the resist. Then the excess freezing material is removed using a developer. In the following step, a second resist layer is added and the second exposure is done. To prevent the second resist layer solvent from washing away the first resist, the freezing material changes the properties of the first resist layer so that it becomes non-soluble in the second resist layer.

This technique allowed printing 32nm dense lines using dipole illumination at 1.0NA. CDU for the 44nm HP lines was excellent (3s = 2.4nm). Moreover, 32nm node 2D logic cells as well as 32nm dense lines could be etched into poly. Lines resulting from the first and second lithography step cannot be distinguished, illustrating the good resolution obtained with this technique.

IMEC is currently transferring this process to its newly installed 1.35 NA immersion scanner (ASML XT:1900i) to explore this solution for sub-32nm half pitches (towards 22nm node).

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www.imec.be/wwwinter/mediacenter/en/doublepattSemWest.shtml

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>