Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of the source of the most common meteorites

10.07.2008
Astronomy & Astrophysics is publishing the first discovery by T. Mothé-Diniz (Brazil) and D. Nesvorný (USA) of asteroids with a spectrum similar to that of ordinary chondrites, the meteoritic material that most resembles the composition of our Sun.

Most of the meteorites that we collect on Earth come from the main belt of asteroids located between Mars and Jupiter [1]. They were ejected from their asteroidal “parent body” after a collision, were injected into a new orbit, and they finally felt onto the Earth.

Meteorites are a major tool for knowing the history of the solar system because their composition is a record of past geologic processes that occurred while they were still incorporated in the parent asteroid. One fundamental difficulty is that we do not know exactly where the majority of meteorite specimens come from within the asteroidal main belt. For many years, astronomers failed to discover the parent body of the most common meteorites, the ordinary chondrites that represent 75% of all the collected meteorites.

To find the source asteroid of a meteorite, astronomers must compare the spectra of the meteorite specimen to those of asteroids. This is a difficult task because meteorites and their parent bodies underwent different processes after the meteorite was ejected. In particular, asteroidal surfaces are known to be altered by a process called “space weathering”, which is probably caused by micrometeorite and solar wind action that progressively transforms the spectra of asteroidal surfaces. Hence, the spectral properties of asteroids become different from those of their associated meteorites, making the identification of asteroidal parent body more difficult.

Collisions are the main process to affect asteroids. As a consequence of a strong impact, an asteroid can be broken up, its fragments following the same orbit as the primary asteroid. These fragments constitute what astronomers call “asteroid families”. Until recently, most of the known asteroid families have been very old (they were formed 100 million to billions of years ago). Indeed, younger families are more difficult to detect because asteroids are closer to each other [2].

In 2006, four new, extremely young asteroid families were identified, with an age ranging from 50000 to 600000 years. These fragments should be less affected than older families by space weathering after the initial breakup. Mothé-Diniz and Nesvorný then observed these asteroids, using the GEMINI telescopes (one located in Hawaii, the other in Chile), and obtained visible spectra. They compared the asteroids spectra to the one of an ordinary chondrite (the Fayetteville meteorite [3]) and found good agreement, as illustrated on Fig. 1.

This discovery is the first observational match between the most common meteorites and asteroids in the main belt. It also confirms the role of space weathering in altering asteroid surfaces. Identifying the asteroidal parent body of a meteorite is a unique tool when studying the history of our solar system because one can infer both the time of geological events (from the meteorite that can be analyzed through datation techniques) and their location in the solar system (from the location of the parent asteroid).

[1] There are only a few exceptions, including the example of the famous meteorites coming from Mars.

[2] After the primary asteroid is disrupted, the fragments move away from each other. The older the collision, the greater the distance between fragments.

[3] Meteorites are named for the place they were collected. The Fayetteville meteorite fell near Fayetteville, Arkansas, on December 26, 1934.

Jennifer Martin | alfa
Further information:
http://www.obspm.fr
http://www.aanda.org/content/view/318/42/lang,en/
http://www.aanda.org/content/view/318/42/lang,en/

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>