Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Puts Solar Spin on Asteroids, their Moons & Earth Impacts

10.07.2008
Asteroids with moons, which scientists call binary asteroids, are common in the solar system. A longstanding question has been how the majority of such moons are formed. In this week’s issue of the journal Nature, a trio of astronomers from Maryland and France say the surprising answer is sunlight, which can increase or decrease the spin rate of an asteroid.

Derek Richardson, of the University of Maryland, his former student Kevin Walsh, now Poincaré Fellow in the Planetology Group in the Cassiopée Laboratory of CNRS at the Cote d'Azur Observatory, France, and that group’s leader, co-author Patrick Michel outline a model showing that when solar energy “spins up” a “rubble pile” asteroid to a sufficiently fast rate, material is slung off from around the asteroid’s equator. This process also exposes fresh material at the poles of the asteroid.

If the spun off bits of asteroid rubble shed sufficient excess motion through collisions with each other, then the material coalesces into a satellite that continues to orbit its parent.

Because the team’s model closely matches observations from binary asteroids, it neatly fills in missing pieces to a solar system puzzle. And, it could have much more down-to-earth implications as well. The model gives information on the shapes and structure of near-Earth binary asteroids that could be vital should such a pair need to be deflected away from a collision course with Earth.

Finally, the authors say, these findings suggest that a sample return mission to such a binary asteroid could bring back exposed pristine material from the poles of the parent asteroid, providing a chance to probe the internal composition of an asteroid without having to dig into it.

Solar Spin Power
It’s estimated that about 15 per cent of near-Earth and main-belt asteroids with diameters less than 10 kilometers have satellites. Scientists have determined that these small binary asteroid pairs were not formed at the beginning of the solar system, indicating that some process still at work must have created them.

“It was at first thought the moons in these asteroid pairs probably formed through collisions and/or close encounters with planets,” said Richardson, an associate professor of astronomy at the University of Maryland. “However, it was found that these mechanisms could not account for the large number of binary asteroids present among near-Earth and inner main belt asteroids.”

Recent studies have outlined a thermal process – known as the YORP effect after the scientists (Yarkovsky, O’Keefe, Radzievskii, Paddack) who identified it – by which sunlight can speed up or slow down an asteroid’s spin. Widespread evidence of this mechanism can be seen in the “notable abundance of both fast and slow rotators among [near-Earth asteroids] and small main belt asteroids,” Walsh, Richardson and Michel write in the Nature paper.

The trio modeled different types of 'rubble pile' asteroids -- chunks of rock held together by gravity. This work, supported by the National Science Foundation and NASA, as well as the European Space Agency and the French National Planetology Program, is the first to show how the slow spinup of such asteroids leads over millions of years to mass loss that can form binaries.

“Our model almost exactly matches the observations of our test case, binary asteroid KW4, which was imaged incredibly well by the NSF-supported Arecibo radio telescope in Puerto Rico,” Walsh said.

Asteroid Deep Impacts
“Based on our findings, the YORP effect appears to be the key to the origin of a large fraction of observed binaries,” said Michel. “The implications are that binary asteroids are preferentially formed from aggregate objects [rubble piles], which agrees with the idea that such asteroids are quite porous. The porous nature of these asteroids has strong implications for defensive strategies if faced with an impact risk to Earth from such objects, because the energy required to deflect an asteroid depends sensitively on its internal structure,” he said.

Doublet craters formed by the nearly simultaneous impact of objects of comparable size can be found in a number of places on Earth, suggesting that binary asteroids have hit our planet in the past. Similar doublet craters also can be found on other planets.

The authors say that their current findings also suggest that a space mission to a binary asteroid could bring back material that might shed new light on the solar system’s early history. The oldest material in an asteroid should lie underneath its surface, explained Richardson, and the process of spinning off this surface material from the primary asteroid body to form its moon, or secondary body, should uncover the deeper older material.

“Thus a mission to collect and return a sample from the primary body of such a binary asteroid could give us information about the older, more pristine material inside an asteroid, just as the University of Maryland-led Deep Impact gave us information about the more pristine material inside a comet,” Richardson said.

Michel added, “Bringing back pristine material is the goal of our proposed Marco Polo mission, which is currently under study by the European Space Agency, in partnership with JAXA in Japan.”

Lee Tune | Newswise Science News
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>