Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech Research to Enhance Future Digital Imaging

08.07.2008
Led by Sri Sridhar, Distinguished Professor and Chair of Physics at Northeastern University, a team of researchers from the university’s Electronic Materials Research Institute has published research that has resulted in a new breakthrough in the field of nanophotonics, the study of light at the nanoscale level.

Utilizing nanomanufacturing processes, the researchers were able to develop an optical microlens with a step-like surface, instead of a smooth surface, that has the capacity to operate at infrared frequencies using the novel phenomenon of negative index refraction.

The team of researchers involved with this project includes Wentao Lu, Ph.D., Bernard Didier F. Casse, Ph.D., and Yongjiang Huang, all from Northeastern. Their findings were published in a recent edition of the journal, Applied Physics Letters.

By using nanolithography, a manufacturing technique used for electronic circuits, the team was able to fabricate this planoconcave lens in the nanoscale. These microlenses function in the infrared frequency range, which is used for optical communications, and use the novel phenomenon of negative refraction, which is not found to occur in natural materials, but can be created in artificial metamaterials. Microlenses are a critical component of optoelectronic devices, which utilize the flow of light rather than of conventional currents as is used in conventional electronics. The technology of these optical circuits has the capacity to create superior devices for data capturing and storage, and for producing high quality, high pixel count images.

“These nano-optical components are essential for superior optical transmission and reception of data that will be used in the future generation of imaging and communication devices,” explained Sridhar. “Our ultimate goal is to integrate both optical and electronic devices onto a single chip, creating a single platform that utilizes both light and electrons with the potential to significantly increase the quality of circuits that are at the heart of all digital electronic devices today.”

About Northeastern

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Jenny Eriksen | Newswise Science News
Further information:
http://www.northeastern.edu

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>