Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M instrument shows what planet Mercury is made of

07.07.2008
By measuring the charged particles in the planet Mercury's magnetic field, a University of Michigan sensor enabled the first observations about the surface and atmospheric composition of the closest world to the sun.

"We now know more about what Mercury's made of than ever before," said Thomas Zurbuchen, a professor in the departments of Atmospheric, Oceanic and Space Sciences and Aerospace Engineering. "Holy cow, we found way more than we expected!"

Zurbuchen is project leader of the Fast Imaging Plasma Spectrometer (FIPS), a soda-can sized sensor on board the MESSENGER spacecraft, which performed the first of three scheduled Mercury flybys in January. A paper on FIPS' results from this flyby is published in the July 4 edition of Science.

Since the Mariner 10 spacecraft's 1975 discovery of Mercury's magnetic field, scientists have speculated about how this magnetic field and the solar wind interact with the planet's surface and exosphere, or thin atmosphere.

FIPS detected silicon, sodium, sulfur and even water ions around Mercury. Ions are atoms or molecules that have lost electrons and therefore have an electric charge.

Because of the quantities of these molecules that scientists detected in Mercury's space environment, they surmise that they were blasted from the surface or exosphere by the solar wind. The solar wind is a stream of charged particles emanating from the sun. It buffets Mercury, which is 2/3 closer to the sun than the Earth, and it causes particles from Mercury's surface and atmosphere to sputter into space. FIPS measured these sputtered particles.

"It's like we did a forensic analysis of Mercury," Zurbuchen said. "This flyby got the first-ever look at surface composition.

"The Mercury magnetosphere is full of many ionic species, both atomic and molecular, and in a variety of charge states. What is in some sense a Mercury plasma nebula is far richer in complexity and makeup than the Io plasma torus in the Jupiter system."

Io is a volcanically active moon of Jupiter that is often considered one of the most exciting space environments, Zurbuchen said. Images and other measurements made by MESSENGER suggest that Mercury's surface composition was determined at least in part by volcanic processes.

FIPS was built at the University of Michigan by more than 10 U-M engineers and technicians with help from more than 50 students.

The paper is called "MESSENGER Observations of the Composition of Mercury's Ionized Exosphere and Plasma Environment."

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://messenger.jhuapl.edu/news_room/index.php
http://www.engin.umich.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>