Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein was right, McGill astrophysicists say

07.07.2008
Observations of unique twin-pulsar star system show effects of general relativity

Researchers at McGill University's Department of Physics – along with colleagues from several countries – have confirmed a long-held prediction of Albert Einstein's theory of general relativity, via observations of a binary-pulsar star system. Their results will be published July 3 in the journal Science.

Pulsars are small, ultradense stellar objects left behind after massive stars die and explode as supernovae. They typically have a mass greater than that of our Sun, but compressed to the size of a city like Montreal. They spin at staggering speeds, generate huge gravity fields and emit powerful beams of radio waves along their magnetic poles. These illuminate Earth-based radio-telescopes like rotating lighthouse beacons as the pulsar spins. More than 1,700 pulsars have been discovered in our galaxy, but PSR J0737-3039A/B, discovered in 2003, is the only known double-pulsar system; that is, two pulsars locked into close orbit around one another. The two pulsars are so close to each other, in fact, that the entire binary could fit within our Sun. PSR J0737-3039A/B lies about 1,700 light years from Earth.

This new test of Einstein's theory was led by McGill astrophysics PhD candidate René Breton and Dr. Victoria Kaspi, leader of the McGill University Pulsar Group.

"A binary pulsar creates ideal conditions for testing general relativity's predictions because the larger and the closer the masses are to one another, the more important relativistic effects are," Breton explained.

"Binary pulsars are the best place to test general relativity in a strong gravitational field," agreed Kaspi, McGill's Lorne Trottier Chair in Astrophysics and Cosmology and Canada Research Chair in Observational Astrophysics. ""Einstein's theory predicted that, in such a field, an object's spin axis should slowly change direction as the pulsar orbits around its companion. Imagine a spinning top when its slightly non-vertical: the spin axis slowly changes direction, an elegant motion called 'precession.'"

The researchers discovered that one of the two pulsars is indeed precessing -- just as Einstein's 1915 theory predicts. If Einstein had been wrong, the pulsar wouldn't be precessing, or would precess in some other way.

Pulsars are too small and too distant to to allow us to directly observe their orientation, the researchers explained. However, they soon realized they could make such measurements using the eclipses visible when one of the twin pulsars passes in front of its companion. When this occurs, the magnetosphere of the first pulsar partly absorbs the radio "light" being emitted from the other, which allows the researchers to determine its spatial orientation. After four years of observations, they determined that its spin axis precesses just as Einstein predicted.

Even though spin precession has been observed in Earth's solar system, differences between general relativity and alternative theories of gravity might only shake out in extremely powerful gravity fields such as those near pulsars, Breton said.

"However, so far, Einstein's theory has passed all the tests that have been conducted, including ours. We can say that if anyone wants to propose an alternative theory of gravity in the future, it must agree with the results that we have obtained here."

Breton, Kaspi and colleagues in Canada, the United Kingdom, the U.S., France and Italy studied the twin-pulsar using the 100-metre Robert C. Byrd Green Bank Radio Telescope at the National Radio Astronomy Observatory in Green Bank, WV.

"I think that if Einstein were alive today, he would have been absolutely delighted with these results," said Dr. Michael Kramer, Associate Director of the Jodrell Bank Centre for Astrophysics at Manchester University. "Not only because it confirms his theory, but also because of the novel way the confirmation came about."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca
http://www.physics.mcgill.ca/~bretonr/doublepulsar/
http://www.shainblum.com/pulsar/kaspi_breton.mp3

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>