Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researchers make first measurements of the solar wind termination shock

07.07.2008
Two University of Iowa space physicists report that the Voyager 2 spacecraft, which has been traveling outward from the Sun for 31 years, has made the first direct observations of the solar wind termination shock, according to a paper published in the July 3 issue of the journal Nature.

At the termination shock the solar wind, which continuously expands outward from the sun at over a million miles per hour, is abruptly slowed to a subsonic speed by the interstellar gas.

Don Gurnett, professor of physics in the College of Liberal Arts and Sciences and principal investigator for the plasma wave instrument on Voyager 2, and Bill Kurth, UI research scientist and Voyager co-investigator, said that the shock crossing was marked by an intense burst of plasma wave turbulence detected by the UI instrument, as well as by various effects detected by other instruments on the spacecraft.

At the time of the shock crossing, August 31, 2007, Voyager 2 was at a distance of 83.7 astronomical units (AU), roughly twice the distance between the Sun and Pluto. At this great distance, it took 11.2 hours for the radio signal from the spacecraft to reach Earth.

Shock waves in the thin, ionized gas -- called plasma -- that exists in space are similar in some respects to the shock waves produced by an airplane in supersonic flight. Shock waves in space are believed to play an important role in the acceleration of cosmic rays, which are very energetic atomic particles that continually bombard Earth. The most energetic cosmic rays, which are potentially hazardous to astronauts, are believed to be produced in intense shock waves caused by supernova explosions -- immense stellar explosions that occur in massive stars toward the end of their lives.

The termination shock is believed to be responsible for the origin of less energetic cosmic rays called "anomalous cosmic rays." The recent observations at the termination shock are expected to help physicists understand how cosmic rays are produced by the turbulent fields that exist in such shocks. Gurnett said, "There is no way for us to make direct measure of a super nova shock, so the Voyager 2 measurements at the termination shock provide us the best opportunity in the foreseeable future to understand how cosmic rays are produced by supernova cosmic shocks."

Kurth noted that while some aspects of the termination shock matched scientists' expectations, a number of the observations made by Voyager were surprising and will cause a number of theories to be revised.

Gurnett noted that Voyager 2, launched in 1977, is moving at a speed of 38,000 miles an hour. Even at this considerable speed, the spacecraft will still take 30,000 years to reach a distance equal to that of the nearest star.

The sounds of Voyager's encounter with shock waves at various planets and other sounds of space can be heard by visiting the space audio Web site at: http://www-pw.physics.uiowa.edu/space-audio/.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu
http://www-pw.physics.uiowa.edu/space-audio/

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>