Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eclipses again prove key for Einstein

04.07.2008
Observations of unique dead star system show effects of general relativity

Eclipses in a unique system of two dead stars, called pulsars, has shown that one of the pair is ‘wobbling’ in space - just like a spinning top. The effect, called precession, is precisely as predicted by Albert Einstein and is thus a new and exciting confirmation of his theory.

The discovery was made by researchers at The University of Manchester's Jodrell Bank Centre for Astrophysics - working as part of an international team of astronomers - and will be published on 4 July in the journal Science.

The star system contains two pulsars which were formed when a pair of massive stars exploded and their cores collapsed to create objects whose mass is greater than that of our Sun, but compressed to the size of a city like Manchester. They are spinning at staggering speeds and emit powerful beams of radio waves which sweep across our radio-telescopes like cosmic lighthouses producing regular pulses of energy - hence their name, pulsars. The pulsar pair, PSR J0737-3039A/B, is the only known system in our galaxy where two pulsars are locked into such close orbit around one another - the entire system could fit inside our Sun.

Prof Michael Kramer of The University of Manchester explained: "We discovered the double pulsar in 2003 using the Parkes Radio Telescope in Australia and have since been carefully timing the arrival of its pulses using several telescopes, including the Lovell Telescope at Jodrell Bank, and the Green Bank Telescope in the US. It has proved to be the best test we have for the predictions of Einstein's theory of gravity, general relativity".

René Breton of McGill University added: "The double pulsar creates ideal conditions for testing general relativity's predictions because the larger and the closer two massive objects are to one another, the more important relativistic effects are.

"Binary pulsars are the best place to test general relativity in a strong gravitational field," agreed Prof Victoria Kaspi, also of McGill University. "Einstein predicted that, in such a field, the axis about which an object rotates will precess - or change direction slowly as the pulsar orbits around its companion. Imagine a spinning top tilted over slightly to one side - the spin axis wobbles.

"Pulsars are too small and too distant to allow us to observe this wobble directly", Breton explained. “However, as they orbit each other every 145 minutes, each passes in front of the other and the astronomers soon realized they could measure the direction of the pulsar's spin axis as the highly magnetized region surrounding it blocks the radio waves being emitted from the other. After patiently collecting the radio pulses over the past four years, they have now determined that its spin axis precesses exactly as Einstein predicted.”

Breton explained that even though spin precession has been observed in Earth's solar system, differences between general relativity and alternative theories of gravity might only become apparent in extremely powerful gravity fields such as those near pulsars.

"So far, Einstein's theory has passed all the tests that have been conducted, including ours,” said Breton. “We can now say that if anyone wants to propose an alternative theory of gravity in the future, it must agree with the results that we have obtained here.

"I think that if Einstein were alive today, he would have been absolutely delighted with these results," concluded Prof Kramer. "Not only because it confirms his theory, but also because of the novel and amazing way the confirmation has come about."

Alex Waddington | alfa
Further information:
http://www.jb.man.ac.uk/news/pulsareclipse/

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>