Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eight teams taking up ESA’s Lunar Robotics Challenge

03.07.2008
As interest in exploration of the Moon soars among the world’s space agencies, ESA, through it's General Studies Programme, has challenged university students to develop a robotic vehicle that is capable of working in difficult terrain, comparable to that found at the lunar poles. Eight university teams have been selected to proceed to the design stage of ESA’s Lunar Robotics Challenge.

ESA’s first Lunar Robotics Challenge got under way in late March with the issuing of an Announcement of Opportunity that invited teams of university students to create an innovative, mobile robot capable of retrieving samples from a lunar-like crater.

Eight of the submitted proposals have been selected for funding after evaluation by a team of ESA experts. The selected student teams received the go-ahead to design their robotic systems, and eventually build them to compete in the challenge event.

Challenge objectives

The proposals had to describe the design of a vehicle capable of retrieving soil samples from a crater, and an associated remote-operation workstation. The vehicles are required to weigh no more than 100 kg, consume no more than 2 kW of power, and occupy a volume of no more than 0.5 cubic metres with deployable appendages stowed.

The robot’s test mission includes a number of objectives:
move from a ‘landing site’ to the rim of a lunar-like crater
descend into the crater, negotiating an incline of up to 40 degrees
operate in sunlight on the crater rim, and in the dark interior of the crater
reach the bottom of the 15 m deep crater
locate and retrieve at least 0.1 kg of selected, visually distinctive, soil samples from the bottom of the crater
return to the crater rim and then the ‘landing site’
The vehicle will be remotely operated by a workstation placed outside the crater and with no direct visibility of the crater or rim.

Selected teams

The teams selected to proceed with the design phase, supported by funding from the ESA General Studies Programme (GSP), are:

Universität Bremen, Germany,
Jacobs University Bremen, Germany,

Universidad Politecnica de Madrid, Spain,
Oulun Yliopisto (University of Oulu), Finland
Università di Pisa, Italy,
Scuola Superiore Sant'Anna Pisa, Italy,
Surrey Space Centre, University of Surrey, United
Swiss Federal Institute of Technology (Eidgenössische Technische Hochschule - ETH) Zurich, Switzerland

Each team is required to maintain a web blog during the challenge.

Reviews and competition

Following the selection, a kick-off meeting for the successful entrants was held by videoconference. The student teams were then given a few months to develop their design ready for a Critical Design Review (CDR) to be held at ESA’s European Space Research and Technology Centre (ESTEC), in the Netherlands, on 9 and 10 July. If they are successful at the CDR, the teams will be given approval and further funding to build their entry.

A Test Readiness Review will be held at the premises of each university team once construction of their robot is complete. The challenge will culminate in a 10-day competition, to be held in October 2008.

Gianfranco Visentin | alfa
Further information:
http://www.esa.int
http://www.esa.int/techresources/ESTEC-Article-fullArticle_par-28_1210071294678.html

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>