Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix Returns Treasure Trove for Science

27.06.2008
NASA's Phoenix Mars Lander performed its first wet chemistry on Martian soil flawlessly yesterday, returning a wealth of data that for Phoenix scientists was like winning the lottery.

"We are awash in chemistry data," said Michael Hecht of NASA's Jet Propulsion Laboratory, lead scientist for the Microscopy, Electrochemistry and Conductivity Analyzer, or MECA, instrument on Phoenix. "We're trying to understand what is the chemistry of wet soil on Mars, what's dissolved in it, how acidic or alkaline it is. With the results we received from Phoenix yesterday, we could begin to tell what aspects of the soil might support life."

"This is the first wet-chemical analysis ever done on Mars or any planet, other than Earth," Phoenix co-investigator Sam Kounaves of Tufts University, science lead for the wet chemistry laboratory investigation, said.

About 80 percent of Phoenix's first, two-day wet chemistry experiment is now complete. Phoenix has three more wet-chemistry cells for use later in the mission.

"This soil appears to be a close analog to surface soils found in the upper dry valleys in Antarctica," Kounaves said. "The alkalinity of the soil at this location is definitely striking. At this specific location, one inch into the surface layer, the soil is very basic, with a pH of between eight and nine. We also found a variety of components of salts that we haven't had time to analyze and identify yet, but that include magnesium, sodium, potassium and chloride."

"This is more evidence for water because salts are there. We also found a reasonable number of nutrients, or chemicals needed by life as we know it,"

Kounaves said. "Over time, I've come to the conclusion that the amazing thing about Mars is not that it's an alien world, but that in many aspects, like mineralogy, it's very much like Earth."

Another analytical Phoenix instrument, the Thermal and Evolved-Gas Analyzer (TEGA), has baked its first soil sample to 1,000 degrees Celsius (1,800 degrees Fahrenheit). Never before has a soil sample from another world been baked to such high heat.

TEGA scientists have begun analyzing the gases released at a range of temperatures to identify the chemical make-up of soil and ice. Analysis is a complicated, weeks-long process.

But "the scientific data coming out of the instrument has been just spectacular," said Phoenix co-investigator William Boynton of the University of Arizona, lead TEGA scientist.

"At this point, we can say that the soil has clearly interacted with water in the past. We don't know whether that interaction occurred in this particular area in the northern polar region, or whether it might have happened elsewhere and blown up to this area as dust."

Phoenix project scientist Leslie Tamppari tallied what Phoenix has accomplished during the first 30 Martian days of its mission, and outlined future plans.

The Stereo Surface Imager has by now completed about 55 percent of its three-color, 360-degree panorama of the Phoenix landing site, Tamppari said.
Phoenix has analyzed two samples in its optical microscope as well as first samples in both TEGA and the wet chemistry laboratory. Phoenix has been collecting information daily on clouds, dust, winds, temperatures and pressures in the atmosphere, as well as taken first nighttime atmospheric measurements.

Lander cameras confirmed that white chunks exposed during trench digging were frozen water ice because they sublimated, or vaporized, over a few days.

Phoenix robotic arm dug and sampled, and will continue to dig and sample, at the 'Snow White' trench in the center of a polygon in the polygonal terrain.

"We believe this is the best place for creating a profile of the surface from the top down to the anticipated icy layer," Tamppari said. "This is the plan we wanted to do when we proposed the mission many years ago. We wanted a place just like this where we could sample the soil down to the possible ice layer."

The Phoenix mission is led by Peter Smith of The University of Arizona with project management at JPL and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:
Guy Webster, Jet Propulsion Laboratory
(818-354-6278; guy.webster@jpl.nasa.gov) J.D. Harrington, NASA HQ (202-358-5241; j.d.harrington@nasa.gov) Sara Hammond, University of Arizona (520-626-1974; shammond@lpl.arizona.edu)

Lori Stiles | The University of Arizona
Further information:
http://www.nasa.gov/phoenix
http://phoenix.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>