Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge lenses to observe cosmic dark energy

25.06.2008
UK astronomers, as part of an international team, have reached a milestone in the construction of one of the largest ever cameras to detect the mysterious Dark Energy component of the Universe.

The pieces of glass for the five unique lenses of the camera have been shipped from the US to France to be shaped and polished into their final form. The largest of the five lenses is one metre in diameter, making it one of the largest in the world.

Each milestone in the completion of this sophisticated camera brings us closer to detecting the mysterious and invisible matter that cosmologists estimate makes up around three quarters of our Universe and is driving its accelerating expansion. Observations suggest that roughly 4% of the Universe is made up from ordinary matter and 22% from Dark Matter; this leaves 74% unaccounted for - the so-called Dark Energy.

The Dark Energy Survey (DES) camera will map 300 million galaxies using the Blanco 4-meter telescope - a large telescope with new advanced optics at Chile’s Cerro Tololo Inter-American Observatory.

The vast DES galaxy map will enable the astronomers to measure the Dark Energy far more precisely than current observations. Prof. Ofer Lahav, head of the UCL Astrophysics Group, who also leads the UK DES Consortium, commented "Dark Energy is one of the biggest puzzles in the whole of Physics, going back to a concept proposed by Einstein 90 years ago. The DES observations will tell us if Einstein was right or if we need a major shift in our understanding of the universe.”

The glass for the five lenses was manufactured in the US before being shipped to France where the lenses will be polished to a smoothness level of one millionth of a centimetre.

Dr Peter Doel of the Optical Science Laboratory at UCL said, "The polishing and assembly of the five DES lenses will be a major technological achievement, producing one of the largest cameras on Earth.”

This level of polishing across such large lenses is far more demanding than for normal eye glasses. The lenses will then be sent to the Optical Science Laboratory at UCL in London for assembly into the camera and from there to the telescope in Chile, where observations will start in 2011 and will continue until 2016.

The Science and Technology Facilities Council (STFC) is providing support for the Dark Energy Survey (DES) collaboration, which involves over 100 scientists from the US, UK, Spain and Brazil. The UK consortium includes members from UCL (University College London), Portsmouth, Cambridge, Edinburgh and Sussex universities.

The latest milestone was announced by astronomers from UCL and the US Fermilab National Accelerator Laboratory at a conference on optical instrumentation held at Marseille France, on 23 June 2008.

The DES Director, Prof. John Peoples of Fermilab, commented "The DES Team is thrilled that this long and technically demanding step in the construction of the camera has begun and we congratulate the STFC for making it possible to meet this milestone on schedule."

Professor John Womersley, the Director of Programmes at STFC, added,
“We are delighted that the UK is taking an important role in this innovative project which will help us understand one of the deepest mysteries of the universe."

Julia Short | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>