Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge lenses to observe cosmic dark energy

25.06.2008
UK astronomers, as part of an international team, have reached a milestone in the construction of one of the largest ever cameras to detect the mysterious Dark Energy component of the Universe.

The pieces of glass for the five unique lenses of the camera have been shipped from the US to France to be shaped and polished into their final form. The largest of the five lenses is one metre in diameter, making it one of the largest in the world.

Each milestone in the completion of this sophisticated camera brings us closer to detecting the mysterious and invisible matter that cosmologists estimate makes up around three quarters of our Universe and is driving its accelerating expansion. Observations suggest that roughly 4% of the Universe is made up from ordinary matter and 22% from Dark Matter; this leaves 74% unaccounted for - the so-called Dark Energy.

The Dark Energy Survey (DES) camera will map 300 million galaxies using the Blanco 4-meter telescope - a large telescope with new advanced optics at Chile’s Cerro Tololo Inter-American Observatory.

The vast DES galaxy map will enable the astronomers to measure the Dark Energy far more precisely than current observations. Prof. Ofer Lahav, head of the UCL Astrophysics Group, who also leads the UK DES Consortium, commented "Dark Energy is one of the biggest puzzles in the whole of Physics, going back to a concept proposed by Einstein 90 years ago. The DES observations will tell us if Einstein was right or if we need a major shift in our understanding of the universe.”

The glass for the five lenses was manufactured in the US before being shipped to France where the lenses will be polished to a smoothness level of one millionth of a centimetre.

Dr Peter Doel of the Optical Science Laboratory at UCL said, "The polishing and assembly of the five DES lenses will be a major technological achievement, producing one of the largest cameras on Earth.”

This level of polishing across such large lenses is far more demanding than for normal eye glasses. The lenses will then be sent to the Optical Science Laboratory at UCL in London for assembly into the camera and from there to the telescope in Chile, where observations will start in 2011 and will continue until 2016.

The Science and Technology Facilities Council (STFC) is providing support for the Dark Energy Survey (DES) collaboration, which involves over 100 scientists from the US, UK, Spain and Brazil. The UK consortium includes members from UCL (University College London), Portsmouth, Cambridge, Edinburgh and Sussex universities.

The latest milestone was announced by astronomers from UCL and the US Fermilab National Accelerator Laboratory at a conference on optical instrumentation held at Marseille France, on 23 June 2008.

The DES Director, Prof. John Peoples of Fermilab, commented "The DES Team is thrilled that this long and technically demanding step in the construction of the camera has begun and we congratulate the STFC for making it possible to meet this milestone on schedule."

Professor John Womersley, the Director of Programmes at STFC, added,
“We are delighted that the UK is taking an important role in this innovative project which will help us understand one of the deepest mysteries of the universe."

Julia Short | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>