Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Light as Coolant for Semiconductors

25.06.2008
When lasers illuminate material it usually warms up. Therefore laser beams are, for example, used for cutting sheet steel, for welding or even as scalpels.

But this effect can also be reversed. When the frequency of the laser beam makes the irradiated material just not absorbing its light and slightly more energy (of the photons, as physicists call the light particles) is needed for that, this photons “take” this missing energy from the oscillation energy of the material’s atoms.

Such oscillation energy (“phonons”) is equivalent to the vibration of atoms which is also called temperature and which is slightly reduced by this: the material is cooled down. A team of scientists from Technische Universität Dortmund and Ruhr-Universität Bochum has just carried out the first detailed experimental study regarding this process (known as “photoluminescence up-conversion”) in semiconductor nanostructures. Based on this, the development of a vibration-free cooling of semiconductors might be possible.

The scientist especially determined the optimal laser wave-length as a function of temperature. They found out that the cooling efficiency of any laser beam increases with the temperature, analog to conventional cooling systems.

The temperature in the material, which has to be slightly lower than the photon energy, is adjusted when the gallium-arsenide layers are created, which are embedded in aluminum-gallium-arsenide layers. The thickness of the gallium-arsenide layer, usually a few dozens atom layers, determines this energy.

This so-called “quantum wells”, which can be created with the precision of one atom layer can also be applied to the latest semiconductor-laser generation. This technology can therefore be used to produce the sending laser as well as the cooling material.

The study has been carried out at the Chair for Experimental Physics III, Technische Universität Dortmund, by Dr. Soheyla Eshlaghi, Wieland Worthoff and Prof. Dr. Dieter Suter as well as Prof. Dr. Andreas D. Wieck from the Chair for Applied Solid-State Physics, Ruhr-Universität Bochum. It is published in the current edition of the Physical Review, one of the oldest and most distinguished professional journals in physics.

Ole Luennemann | alfa
Further information:
http://www.tu-dortmund.de

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>