Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Light as Coolant for Semiconductors

25.06.2008
When lasers illuminate material it usually warms up. Therefore laser beams are, for example, used for cutting sheet steel, for welding or even as scalpels.

But this effect can also be reversed. When the frequency of the laser beam makes the irradiated material just not absorbing its light and slightly more energy (of the photons, as physicists call the light particles) is needed for that, this photons “take” this missing energy from the oscillation energy of the material’s atoms.

Such oscillation energy (“phonons”) is equivalent to the vibration of atoms which is also called temperature and which is slightly reduced by this: the material is cooled down. A team of scientists from Technische Universität Dortmund and Ruhr-Universität Bochum has just carried out the first detailed experimental study regarding this process (known as “photoluminescence up-conversion”) in semiconductor nanostructures. Based on this, the development of a vibration-free cooling of semiconductors might be possible.

The scientist especially determined the optimal laser wave-length as a function of temperature. They found out that the cooling efficiency of any laser beam increases with the temperature, analog to conventional cooling systems.

The temperature in the material, which has to be slightly lower than the photon energy, is adjusted when the gallium-arsenide layers are created, which are embedded in aluminum-gallium-arsenide layers. The thickness of the gallium-arsenide layer, usually a few dozens atom layers, determines this energy.

This so-called “quantum wells”, which can be created with the precision of one atom layer can also be applied to the latest semiconductor-laser generation. This technology can therefore be used to produce the sending laser as well as the cooling material.

The study has been carried out at the Chair for Experimental Physics III, Technische Universität Dortmund, by Dr. Soheyla Eshlaghi, Wieland Worthoff and Prof. Dr. Dieter Suter as well as Prof. Dr. Andreas D. Wieck from the Chair for Applied Solid-State Physics, Ruhr-Universität Bochum. It is published in the current edition of the Physical Review, one of the oldest and most distinguished professional journals in physics.

Ole Luennemann | alfa
Further information:
http://www.tu-dortmund.de

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>