Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Novel X-ray Source Could be Brightest in the World

24.06.2008
The future of high-intensity x-ray science has never been brighter now that scientists at U.S. Department of Energy's Argonne National Laboratory have devised a new type of the next generation light sources.

"The free electron laser oscillator (X-FELO) we are proposing can create x-rays up to one hundred million times brighter than currently operating machines," Argonne Distinguished fellow Kwang-Je Kim said.

Current technology uses undulators to create bright x-ray beams of spontaneous emission at the Advanced Photon Source (APS) at Argonne. Much of the research for x-ray free electron lasers has been concentrated on self-amplified spontaneous emission (SASE), which would amplify the spontaneous emission by a factor of a million or more in a single pass. A user of SASE will see x-ray brightness which is higher on the average about ten thousand times brighter than the APS is delivering.

In an X-FELO, the electron pulse enters an undulator and generates an x-ray that is reflected back into the undulator entrance by crystals and connects with the next electron bunch and again travels back along the undulator. This pattern is repeated indefinitely with the x-ray intensity growing each time until equilibrium is reached.

X-FELO will open up breakthrough scientific opportunities in various research fields. For example, the inelastic x-ray scattering and nuclear resonant scattering experiments at the APS are severely limited by small x-ray flux in meV bandwidth. An X-FELO will enhance the flux by six to eight orders of magnitudes, shortening the data collection times by the same factor. Time-resolved measurement of the Fermi surface is a powerful way to study complex materials such as high-temperature super conductors. The characteristics of X-FELO are ideally suited for bulk-sensitive, hard x-ray photo-emission spectroscopy for this purpose.

The brightness, or more precisely the spectral brightness, is proportional to the intensity of coherent photons per unit spectral bandwidth. It is a standard figure of merits for the strength and purity of an x-ray source.

The intensity of individual x-ray pulse from an X-FELO is lower by about three orders of magnitudes. However the X-FELO pulse has extremely narrow bandwidth, three to four orders of magnitude narrower than the SASE. Furthermore, the pulses come with a repetition rates higher by two to four orders of magnitudes higher than in SASE. Therefore a user of an X-FELO will see an x-ray brightness which is higher on the average about six to eight orders of magnitude brighter than any previously created and three to four orders of magnitude brighter than proposed SASE technology.

"Collaborators from around the world are working to develop the high-quality electron beam necessary for the oscillator," Kim said.

The research was funded by a Laboratory Directed Research and Development grant. A paper on Kim's work in collaboration with Argonne senior scientist Yuri Shvyd’ko and a UCLA physicist Sven Reiche can be seen in the June 20 edition of Physical Review Letters.

Argonne National Laboratory brings the world’s brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | newswise
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>