Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists discover possible nanodiamond formation in the early solar system

12.07.2002

An astrophysicist from Lawrence Livermore National Laboratory’s Institute for Geophysics and Planetary Physics has found that some nanodiamonds, the most famous and exotic form of stardust, may instead have formed within the inner solar system. The findings argue with the wide held belief that nanodiamonds recovered from meteorites from the asteroid belt have been the most abundant type of presolar stardust grain.

IGPP Director John Bradley, in conjunction with scientists from the Georgia Institute of Technology, the University of Washington, NASA Goddard Space Flight Center and the Natural History Museum in London, report their discovery in today’s edition of Nature.

"We presumed that if we studied (micro) meteorites (also known as interplanetary dust particles) from comets further out in our solar system, we would find more nanodiamonds," Bradley said. "But we’re just not seeing them. One theory is that some, perhaps most, nanodiamonds formed within the inner solar system and are not presolar at all."

Interplanetary dust particles are collected in the stratosphere using NASA ER2 aircraft and they are made up of irregularly shaped grains of carbon and/or silicates.

One origin of stardust is from supernovae, the cataclysmic deaths of a star. For more than 30 years, astrophysicists have looked to stardust, a sort of remnant of stars, to tell the story of our solar system’s origins.

But Bradley and the group of researchers report that at least some of the oldest cometary interplanetary dust particles contain little or no nanodiamond stardust at all.

"This raises all sorts of questions about the origins of our solar system," Bradley said. "Our findings are consistent with recent research that has detected nanodiamonds within the accretion discs of other young stars that are similar to our early solar system."

The group concludes that an alternative explanation for the lack of nanondiamonds in the early meteorites is that all meteoritic nanodiamonds are presolar, but that their abundance decreases the further they are from the sun. In that case, our understanding of large-scale transport and circulation within the early solar system is incomplete.

Anne Stark | EurekAlert

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>