Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists discover possible nanodiamond formation in the early solar system

12.07.2002

An astrophysicist from Lawrence Livermore National Laboratory’s Institute for Geophysics and Planetary Physics has found that some nanodiamonds, the most famous and exotic form of stardust, may instead have formed within the inner solar system. The findings argue with the wide held belief that nanodiamonds recovered from meteorites from the asteroid belt have been the most abundant type of presolar stardust grain.

IGPP Director John Bradley, in conjunction with scientists from the Georgia Institute of Technology, the University of Washington, NASA Goddard Space Flight Center and the Natural History Museum in London, report their discovery in today’s edition of Nature.

"We presumed that if we studied (micro) meteorites (also known as interplanetary dust particles) from comets further out in our solar system, we would find more nanodiamonds," Bradley said. "But we’re just not seeing them. One theory is that some, perhaps most, nanodiamonds formed within the inner solar system and are not presolar at all."

Interplanetary dust particles are collected in the stratosphere using NASA ER2 aircraft and they are made up of irregularly shaped grains of carbon and/or silicates.

One origin of stardust is from supernovae, the cataclysmic deaths of a star. For more than 30 years, astrophysicists have looked to stardust, a sort of remnant of stars, to tell the story of our solar system’s origins.

But Bradley and the group of researchers report that at least some of the oldest cometary interplanetary dust particles contain little or no nanodiamond stardust at all.

"This raises all sorts of questions about the origins of our solar system," Bradley said. "Our findings are consistent with recent research that has detected nanodiamonds within the accretion discs of other young stars that are similar to our early solar system."

The group concludes that an alternative explanation for the lack of nanondiamonds in the early meteorites is that all meteoritic nanodiamonds are presolar, but that their abundance decreases the further they are from the sun. In that case, our understanding of large-scale transport and circulation within the early solar system is incomplete.

Anne Stark | EurekAlert

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>