Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frozen Water Confirmed on Mars

23.06.2008
Scientists relishing confirmation of water ice near the surface beside NASA's Phoenix Mars Lander anticipate even bigger discoveries from the robotic mission in the weeks ahead.

"It is with great pride and a lot of joy that I announce today that we have found proof that this hard bright material is really water ice and not some other substance," said Phoenix Principal Investigator Peter Smith of The University of Arizona, during a Friday news briefing to announce the confirmation of water ice.

"The truth we're looking for is not just looking at ice. It is in finding out the minerals, chemicals and hopefully the organic materials associated with these discoveries," said Smith.

The mission has the right instruments for analyzing soil and ice to determine whether the local environment just below the surface of far-northern Mars has ever been favorable for microbial life. Key factors are whether the water ever becomes available as a liquid and whether organic compounds are present that could provide chemical building blocks and energy for life. Phoenix landed on May 25 for a Mars surface mission planned to last for three months.

"These latest developments are a major accomplishment and validation of the Mars program's 'follow-the-water' exploration framework," said Doug McCuistion at NASA Headquarters, Washington, director of the space agency's Mars Program. "This specific discovery is the result of an outstanding team working with a robust spacecraft that has allowed them to work ahead of their original science schedule."

The key new evidence is that chunks of bright material exposed by digging on June 15 and still present on June 16 had vaporized by June 19. "This tells us we've got water ice within reach of the arm, which means we can continue this investigation with the tools we brought with us," said Mark Lemmon of Texas A&M University, College Station, the lead scientist for Phoenix's Surface Stereo Imager camera. Lemmon said the disappearing chunks could not have been carbon-dioxide ice at the local temperatures because that material would not have been stable for even one day as a solid.

The disappearing chunks were in a trench to the northwest of the lander. A hard material, possibly more ice, but darker than the bright material in the first trench, has been detected in a second trench, to the northeast of the lander. Scientists plan next to have Phoenix collect and analyze surface soil from a third trench near the second one, and later to mechanically probe and sample the hard layer.

"We have in our ice-attack arsenal backhoeing, scraping and rasping, and we'll try all of these," said Ray Arvidson of Washington University in St. Louis, lead scientist for Phoenix's Robotic Arm.

Phoenix Project Manager Barry Goldstein of NASA's Jet Propulsion Laboratory in Pasadena, Calif., reported that an issue reported earlier this week related to producing thousands of duplicate copies of some file-maintenance data files has been diagnosed, and a corrective software patch will be sent to Phoenix within a few days.

Science operations continue in the meantime, though all data collected must be relayed to Earth on the same Martian day it is collected, instead of being stored to non-volatile memory when Phoenix powers down to conserve energy during the Martian night.

Images sent back Friday morning from Mars showed that the doors to the No. 5 oven on the Thermal and Evolved-Gas Analyzer opened part way. The instrument team is working to understand the consequences of this action.

The Phoenix mission is led by Peter Smith of the UA with project management at JPL and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

CONTACTS:
Sara Hammond, University of Arizona
(520-626-1974; shammond@lpl.arizona.edu)
Guy Webster, Jet Propulsion Laboratory, Pasadena, Calif.
(818-354-5011; guy.webster@jpl.nasa.gov)
Dwayne Brown, NASA Headquarters, Washington
(202-358-1726; dwayne.c.brown@nasa.gov)

Sara Hammond | University of Arizona
Further information:
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>