Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frozen Water Confirmed on Mars

23.06.2008
Scientists relishing confirmation of water ice near the surface beside NASA's Phoenix Mars Lander anticipate even bigger discoveries from the robotic mission in the weeks ahead.

"It is with great pride and a lot of joy that I announce today that we have found proof that this hard bright material is really water ice and not some other substance," said Phoenix Principal Investigator Peter Smith of The University of Arizona, during a Friday news briefing to announce the confirmation of water ice.

"The truth we're looking for is not just looking at ice. It is in finding out the minerals, chemicals and hopefully the organic materials associated with these discoveries," said Smith.

The mission has the right instruments for analyzing soil and ice to determine whether the local environment just below the surface of far-northern Mars has ever been favorable for microbial life. Key factors are whether the water ever becomes available as a liquid and whether organic compounds are present that could provide chemical building blocks and energy for life. Phoenix landed on May 25 for a Mars surface mission planned to last for three months.

"These latest developments are a major accomplishment and validation of the Mars program's 'follow-the-water' exploration framework," said Doug McCuistion at NASA Headquarters, Washington, director of the space agency's Mars Program. "This specific discovery is the result of an outstanding team working with a robust spacecraft that has allowed them to work ahead of their original science schedule."

The key new evidence is that chunks of bright material exposed by digging on June 15 and still present on June 16 had vaporized by June 19. "This tells us we've got water ice within reach of the arm, which means we can continue this investigation with the tools we brought with us," said Mark Lemmon of Texas A&M University, College Station, the lead scientist for Phoenix's Surface Stereo Imager camera. Lemmon said the disappearing chunks could not have been carbon-dioxide ice at the local temperatures because that material would not have been stable for even one day as a solid.

The disappearing chunks were in a trench to the northwest of the lander. A hard material, possibly more ice, but darker than the bright material in the first trench, has been detected in a second trench, to the northeast of the lander. Scientists plan next to have Phoenix collect and analyze surface soil from a third trench near the second one, and later to mechanically probe and sample the hard layer.

"We have in our ice-attack arsenal backhoeing, scraping and rasping, and we'll try all of these," said Ray Arvidson of Washington University in St. Louis, lead scientist for Phoenix's Robotic Arm.

Phoenix Project Manager Barry Goldstein of NASA's Jet Propulsion Laboratory in Pasadena, Calif., reported that an issue reported earlier this week related to producing thousands of duplicate copies of some file-maintenance data files has been diagnosed, and a corrective software patch will be sent to Phoenix within a few days.

Science operations continue in the meantime, though all data collected must be relayed to Earth on the same Martian day it is collected, instead of being stored to non-volatile memory when Phoenix powers down to conserve energy during the Martian night.

Images sent back Friday morning from Mars showed that the doors to the No. 5 oven on the Thermal and Evolved-Gas Analyzer opened part way. The instrument team is working to understand the consequences of this action.

The Phoenix mission is led by Peter Smith of the UA with project management at JPL and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

CONTACTS:
Sara Hammond, University of Arizona
(520-626-1974; shammond@lpl.arizona.edu)
Guy Webster, Jet Propulsion Laboratory, Pasadena, Calif.
(818-354-5011; guy.webster@jpl.nasa.gov)
Dwayne Brown, NASA Headquarters, Washington
(202-358-1726; dwayne.c.brown@nasa.gov)

Sara Hammond | University of Arizona
Further information:
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>