Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


PTB testing method for finger ring dosemeters has proven its effectiveness

Finger ring dosemeters are used at diverse workplaces having ionizing radiation, e.g. in medicine and industry, in order to check whether the effective dose limt values are adhered to.

The dosemeters used to measure beta radiation have been subjected to an annual quality control by the PTB for six years now. Since then, all dosimeter models used in Germany have passed these controls.

In Germany, for persons who are occupationally exposed to radiation, monitoring with personal dose equivalent meters is legally prescribed. Besides the whole-body dosimeters which are to be worn on the trunk, also passive extremity dosimeters are used which are often worn around the fingers. Extremity dosimeters are used for beta radiation measurements, especially in medicine. All dosimeters of this type are released and assessed by dosimetry services. PTB is thereby responsible for quality control. Quality control takes place in two stages:

In the first stage, the designs are submitted to a thorough check with regard to their properties before the dosimeter is released for use. In the case of beta dosimeters, this control is carried out according to a directive.

In the second stage, the routine operation is checked yearly at the dosimetry services via so-called "periodic comparison measurements". The dosimeters are thereby exposed by PTB to a well known dose - which we we will call HPTB in the following. Then, the dosimetry services analyse the dosimeters and determine their measured value, HDST, of course without knowing the value of HPTB. As a measure of quality, the quotient HDST/HPTB is used which is 1.0 for an ideal dosimeter. The figure shows the values of these quotients in relation with the dose for all comparison measurements which have been carried out with beta radiation up to now. The lines plotted indicate the admissible limits for this quotient. Due to the requirements of radiation protection, these limits narrow towards high doses.

The condition for passing the yearly comparison measurements is that 90% of all quotients for each design of a service lie within these limits. If this requirement is not met by one dosimeter design for the comparison measurement, a repetition is carried out for this dosimeter. This has never been the case up to now. In summary, one can say that this type of two-stage quality control is particularly efficient.

Dr. Rolf Behrens, PTB Working Group 6.34 Beta Dosimetry, Phone +49531-592 6340, e-mail:

Erika Schow | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>