Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better understanding of space weather

18.06.2008
All modern societies rely heavily on space systems for communications and resource information, including meteorological, navigation and remote sensing systems.

There are high costs and high risks associated with the consequences of space weather events, as insurance companies recognise.

Intense space weather events are triggered by the explosive release of energy stored in the Sun’s magnetic field.

A strong burst of electromagnetic energy reaches the Earth with the potential to disrupt many of our fundamental services, such as satellite and aviation operations, navigation, and electricity power grids. Telecommunications and information technology are likewise vulnerable to space weather.

Research by the Radio and Space Plasma Physics Group in the University of Leicester’s Department of Physics and Astronomy helps our understanding of coupling processes between the solar wind and the Earth’s magnetosphere by allowing the observation of the consequences of space weather with an unprecedented resolution.

Postgraduate researcher James Borderick explained: “We introduce the importance of utilising ground-based measurements of the near space environment in conjunction with spacecraft observations and then proceed to explain the direct influences of space weather on our own technological systems.

“Utilising our new radar modes and an international array of ground-based and space-based instruments, we are ever increasing our understanding of the countless phenomena associated with the solar-terrestrial interaction.”

“One day this may lead us to the accurate predictions of the occurrence and consequences of phenomena such as Coronal Mass Ejections (CMEs), and perhaps an active defence.”

The use of ground-based radars for observations of ionospheric and magnetospheric dynamics is well established. The Super Dual Auroral Radar Network (SuperDARN) consists of networks of High-Frequency radars surrounding the northern and southern poles, which have yielded extensive data on our near space environment.

A new “double pulse” pulse sequence has been implemented on the Radio Space Plasma Physics Group’s Co-operative UK Twin Located Auroral Sounding System (CUTLASS) radars. CUTLASS forms part of SuperDARN.

The new sounding mode enhances the temporal resolution of observations of plasma irregularities within the ionosphere. It increases the cadence of pulse transmissions within the same transmission time as the standard SuperDARN-operating mode.

As an undergraduate physicist at the University of Leicester, he was awarded both the Philips and Departmental Prizes in Physics and achieved the highest mark of all 4th year undergraduates in his final year. Between his penultimate and final years, he obtained a position on the prestigious SURE research programme where he conducted a preliminary investigation on the coupling processes between the Solar Wind and the Earth’s magnetic field. He has just recently presented his Double Pulse findings at the SuperDARN Conference of 2008 in New South Wales, Australia. In the future, he hopes to continue in academia, forwarding science and simultaneously enthusing the next generation of scientists.

The research is being presented to the public at the University of Leicester on Thursday 26th June. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience.

More information about the Festival of Postgraduate Research is available at: www.le.ac.uk/gradschool/festival

Ather Mirza | alfa
Further information:
http://www.le.ac.uk/gradschool/festival

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>