Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Better understanding of space weather

All modern societies rely heavily on space systems for communications and resource information, including meteorological, navigation and remote sensing systems.

There are high costs and high risks associated with the consequences of space weather events, as insurance companies recognise.

Intense space weather events are triggered by the explosive release of energy stored in the Sun’s magnetic field.

A strong burst of electromagnetic energy reaches the Earth with the potential to disrupt many of our fundamental services, such as satellite and aviation operations, navigation, and electricity power grids. Telecommunications and information technology are likewise vulnerable to space weather.

Research by the Radio and Space Plasma Physics Group in the University of Leicester’s Department of Physics and Astronomy helps our understanding of coupling processes between the solar wind and the Earth’s magnetosphere by allowing the observation of the consequences of space weather with an unprecedented resolution.

Postgraduate researcher James Borderick explained: “We introduce the importance of utilising ground-based measurements of the near space environment in conjunction with spacecraft observations and then proceed to explain the direct influences of space weather on our own technological systems.

“Utilising our new radar modes and an international array of ground-based and space-based instruments, we are ever increasing our understanding of the countless phenomena associated with the solar-terrestrial interaction.”

“One day this may lead us to the accurate predictions of the occurrence and consequences of phenomena such as Coronal Mass Ejections (CMEs), and perhaps an active defence.”

The use of ground-based radars for observations of ionospheric and magnetospheric dynamics is well established. The Super Dual Auroral Radar Network (SuperDARN) consists of networks of High-Frequency radars surrounding the northern and southern poles, which have yielded extensive data on our near space environment.

A new “double pulse” pulse sequence has been implemented on the Radio Space Plasma Physics Group’s Co-operative UK Twin Located Auroral Sounding System (CUTLASS) radars. CUTLASS forms part of SuperDARN.

The new sounding mode enhances the temporal resolution of observations of plasma irregularities within the ionosphere. It increases the cadence of pulse transmissions within the same transmission time as the standard SuperDARN-operating mode.

As an undergraduate physicist at the University of Leicester, he was awarded both the Philips and Departmental Prizes in Physics and achieved the highest mark of all 4th year undergraduates in his final year. Between his penultimate and final years, he obtained a position on the prestigious SURE research programme where he conducted a preliminary investigation on the coupling processes between the Solar Wind and the Earth’s magnetic field. He has just recently presented his Double Pulse findings at the SuperDARN Conference of 2008 in New South Wales, Australia. In the future, he hopes to continue in academia, forwarding science and simultaneously enthusing the next generation of scientists.

The research is being presented to the public at the University of Leicester on Thursday 26th June. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience.

More information about the Festival of Postgraduate Research is available at:

Ather Mirza | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>