Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Trio of Super-Earths

16.06.2008
A harvest of low-mass exoplanets discovered with HARPS

Today, at an international conference, a team of European astronomers announced a remarkable breakthrough in the field of extra-solar planets. Using the HARPS instrument at the ESO La Silla Observatory, they have found a triple system of super-Earths around the star HD 40307. Looking at their entire sample studied with HARPS, the astronomers count a total of 45 candidate planets with a mass below 30 Earth masses and an orbital period shorter than 50 days. This implies that one solar-like star out of three harbours such planets.

"Does every single star harbour planets and, if yes, how many?" wonders planet hunter Michel Mayor from Geneva Observatory. "We may not yet know the answer but we are making huge progress towards it."

Since the discovery in 1995 of a planet around the star 51 Pegasi by Mayor and Didier Queloz, more than 270 exoplanets have been found, mostly around solar-like stars. Most of these planets are giants, such as Jupiter or Saturn, and current statistics show that about 1 out of 14 stars harbours this kind of planet.

"With the advent of much more precise instruments such as the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, we can now discover smaller planets, with masses between 2 and 10 times the Earth's mass," says Stéphane Udry, one of Mayor's colleagues. Such planets are called super-Earths, as they are more massive than the Earth but less massive than Uranus and Neptune (about 15 Earth masses).

The group of astronomers have now discovered a system of three super-Earths around a rather normal star, which is slightly less massive than our Sun, and is located 42 light-years away towards the southern Doradus and Pictor constellations.

"We have made very precise measurements of the velocity of the star HD 40307 over the last five years, which clearly reveal the presence of three planets," says Mayor.

The planets, having 4.2, 6.7, and 9.4 times the mass of the Earth, orbit the star with periods of 4.3, 9.6, and 20.4 days, respectively.

"The perturbations induced by the planets are really tiny - the mass of the smallest planets is one hundred thousand times smaller than that of the star - and only the high sensitivity of HARPS made it possible to detect them," says co-author François Bouchy, from the Institut d'Astrophysique de Paris, France.

Indeed, each planet induces a motion of the star of only a few metres per second.

At the same conference, the team of astronomers announced the discovery of two other planetary systems, also with the HARPS spectrograph. In one, a super-Earth (7.5 Earth masses) orbits the star HD 181433 in 9.5 days. This star also hosts a Jupiter-like planet with a period close to 3 years. The second system contains a 22 Earth-mass planet having a period of 4 days and a Saturn-like planet with a 3-year period as well.

"Clearly these planets are only the tip of the iceberg," says Mayor. "The analysis of all the stars studied with HARPS shows that about one third of all solar-like stars have either super-Earth or Neptune-like planets with orbital periods shorter than 50 days."

A planet in a tight, short-period orbit is indeed easier to find than one in a wide, long-period orbit.

"It is most probable that there are many other planets present: not only super-Earth and Neptune-like planets with longer periods, but also Earth-like planets that we cannot detect yet. Add to it the Jupiter-like planets already known, and you may well arrive at the conclusion that planets are ubiquitous," concludes Udry.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2008/pr-19-08.html
http://www.eso.org/public/outreach/press-rel/pr-2008/phot-19-08.html

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>