Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like a Rock: New Mineral Named for Astronomer

16.06.2008
A new mineral, the first to be discovered inside a particle from a comet, has officially been named in honor of University of Washington astronomer Donald Brownlee

The International Mineralogical Association has named a new mineral, the first to be discovered in a particle from a comet, in honor of Donald Brownlee, a University of Washington astronomer who revolutionized research on interplanetary dust entering Earth's atmosphere.

The manganese silicide mineral, a combination of manganese and silicon, is now officially called brownleeite and joins a list of more than 4,300 accepted minerals. It was found inside a particle collected from a dust stream entering the atmosphere in 2003.

Brownlee, whose UW office is adorned with a variety of mineral specimens, was clearly pleased with the honor – and somewhat amused.

"I've always been very intrigued by minerals, so it's great to be one," he said. "I never dreamed I'd have a mineral named after me. I guess maybe being a vitamin is next."

The particle was captured by a high-altitude NASA aircraft, and NASA researchers in Houston, along with collaborators elsewhere in the United States, Germany and Japan, identified the compound. (See http://www.nasa.gov/home/hqnews/2008/jun/HQ_08143_comet_dust.html.) Brownleeite, a semiconductor material, can be synthesized but has not been found naturally on Earth.

The team that found the manganese silicide was led by NASA scientist Keiko Nakamura-Messenger from the Johnson Space Center in Houston, who provided documentation for the international mineralogical body to declare the specimen to be a new mineral. The team also asked that it be named for Brownlee.

"This really did surprise me because I know it took a lot of effort to get this mineral approved," Brownlee said.

Nakamura-Messenger's team believes the dust particle originated in a comet, possibly comet 26P/Grigg-Skjellerup, which was predicted to be the source of an Earth-crossing dust stream in April 2003, when the particle was captured.

The Earth is covered with more than 30,000 tons of particles from space every year, one particle per square meter of planet surface every day. But the particles are so small that it would take 10 billion to fully cover that square meter of surface, so they are extremely hard to find.

"That's a lot of dirt and it takes 300 million years to build up a layer as thick as the diameter of a human hair," Brownlee said.

He began his efforts to capture particles of provable extraterrestrial origin while he was a UW doctoral student in the late 1960s. Others had made similar efforts previously, but they proved to be unsuccessful. Using a succession of high-altitude balloons, Brownlee captured a few particles that could be proven to have come from somewhere other than Earth.

His third balloon carried an 800-pound machine he calls "the vacuum monster," which dangled below the balloon as it drifted at an altitude of 125,000 feet, or about 24 miles. The machine made it possible to sample a very large volume of air, and eventually he was able to capture a total of about a dozen interplanetary dust particles from seven flights.

He later devised a small collector that could be attached to the fuselage of high-flying U2 reconnaissance aircraft and, because the planes remain airborne for so long and fly at high speeds, they are able to collect hundreds of particles.

"Almost all of the flights are done for something else, and these detectors are along for the ride. When they are opened, they just flop out into the atmosphere and gather particles as the plane moves along," Brownlee said.

Brownlee also is a leading authority on comets. He is the principal investigator of NASA's Stardust mission, which traveled to comet 81P/Wild-2 beyond the orbit of Mars, captured particles streaming from the comet's surface, and returned them to Earth in January 2006. The samples are curated by the Johnson Space Center.

For more information, contact Brownlee at (206) 543-8575 or brownlee@astro.washington.edu.

Vince Stricherz | newswise
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>