Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Explore the Physics of Fizz

13.06.2008
Students use the principles of physics to explain the Mentos-Diet Coke reaction.

Just about everyone knows what happens when you drop Mentos mints into a Diet Coke.

Students at Appalachian State University have documented why the reaction occurs by studying the physics responsible for the fizzy result. Their results have been published in the June 2008 issue of the American Journal of Physics.

Tonya Coffey, an assistant professor of physics at Appalachian, developed the research project to as a way for sophomore-level students to build on skills they learned in their freshmen physics courses.

Through a series of experiments, the students found that a reaction between the rough surface of the Mentos, and the potassium benzoate and aspartame contained in Diet Coke were responsible for the famous geyser reaction, in which the liquid can spew up to 30 feet.

In the process, they also learned about the principles of thermodynamics, fluid mechanics, surface science and the physics of eruptions.

“We try to teach students what real experiments are like,” Coffey said. “I thought it would be good for the students to work on an experiment that doesn’t have a known outcome—because that’s what research is.”

Coffey asked her students to find out everything they could about the Diet Coke and Mentos reaction, develop a question about the reaction and design an experiment to answer their question. The students’ only restrictions were to design an experiment that could be accomplished on a tight budget and to use existing equipment at the university.

“We discussed what a real researcher has to do when designing an experiment to answer a question,” Coffey said. Students studied what makes a good experiment, how complications can arise, the need to narrow the number of unknowns in an experiment, and the importance of designing an experiment that tests for one variable at time.

The students measured the volume of liquid displaced and the distance it traveled when a variety of items were added to Diet Coke – including Mentos, Wint-O-Green Lifesavers, rock salt, table salt and sand.

They also studied the surface roughness of the candy and other materials by using a scanning electron microscope and an atomic force microscope.

So why does the reaction occur? In an opened container of soda, carbon dioxide gas bubbles out over the course of minutes or hours until the concentration of carbon dioxide left in the soda is proportional to the carbon dioxide in the surrounding air. This de-fizzing reaction is slow because the surface tension of the liquid is very high, which keeps the gas bubbles trapped.

But when a Mentos is dropped in the beverage, it breaks the surface tension and as it falls the candy’s surfactant coating further reduces the surface tension of the liquid. The candy’s rough surface also provides growth sites for the gas, making it easier for carbonation to escape as a foam geyser.

The geyser also occurs when sand, salt or lifesavers were added to the Diet Coke, but the mass lost and volume traveled is much less spectacular.

Tonya Coffey | newswise
Further information:
http://www.appstate.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>