Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Students Explore the Physics of Fizz

Students use the principles of physics to explain the Mentos-Diet Coke reaction.

Just about everyone knows what happens when you drop Mentos mints into a Diet Coke.

Students at Appalachian State University have documented why the reaction occurs by studying the physics responsible for the fizzy result. Their results have been published in the June 2008 issue of the American Journal of Physics.

Tonya Coffey, an assistant professor of physics at Appalachian, developed the research project to as a way for sophomore-level students to build on skills they learned in their freshmen physics courses.

Through a series of experiments, the students found that a reaction between the rough surface of the Mentos, and the potassium benzoate and aspartame contained in Diet Coke were responsible for the famous geyser reaction, in which the liquid can spew up to 30 feet.

In the process, they also learned about the principles of thermodynamics, fluid mechanics, surface science and the physics of eruptions.

“We try to teach students what real experiments are like,” Coffey said. “I thought it would be good for the students to work on an experiment that doesn’t have a known outcome—because that’s what research is.”

Coffey asked her students to find out everything they could about the Diet Coke and Mentos reaction, develop a question about the reaction and design an experiment to answer their question. The students’ only restrictions were to design an experiment that could be accomplished on a tight budget and to use existing equipment at the university.

“We discussed what a real researcher has to do when designing an experiment to answer a question,” Coffey said. Students studied what makes a good experiment, how complications can arise, the need to narrow the number of unknowns in an experiment, and the importance of designing an experiment that tests for one variable at time.

The students measured the volume of liquid displaced and the distance it traveled when a variety of items were added to Diet Coke – including Mentos, Wint-O-Green Lifesavers, rock salt, table salt and sand.

They also studied the surface roughness of the candy and other materials by using a scanning electron microscope and an atomic force microscope.

So why does the reaction occur? In an opened container of soda, carbon dioxide gas bubbles out over the course of minutes or hours until the concentration of carbon dioxide left in the soda is proportional to the carbon dioxide in the surrounding air. This de-fizzing reaction is slow because the surface tension of the liquid is very high, which keeps the gas bubbles trapped.

But when a Mentos is dropped in the beverage, it breaks the surface tension and as it falls the candy’s surfactant coating further reduces the surface tension of the liquid. The candy’s rough surface also provides growth sites for the gas, making it easier for carbonation to escape as a foam geyser.

The geyser also occurs when sand, salt or lifesavers were added to the Diet Coke, but the mass lost and volume traveled is much less spectacular.

Tonya Coffey | newswise
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>