Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Explore the Physics of Fizz

13.06.2008
Students use the principles of physics to explain the Mentos-Diet Coke reaction.

Just about everyone knows what happens when you drop Mentos mints into a Diet Coke.

Students at Appalachian State University have documented why the reaction occurs by studying the physics responsible for the fizzy result. Their results have been published in the June 2008 issue of the American Journal of Physics.

Tonya Coffey, an assistant professor of physics at Appalachian, developed the research project to as a way for sophomore-level students to build on skills they learned in their freshmen physics courses.

Through a series of experiments, the students found that a reaction between the rough surface of the Mentos, and the potassium benzoate and aspartame contained in Diet Coke were responsible for the famous geyser reaction, in which the liquid can spew up to 30 feet.

In the process, they also learned about the principles of thermodynamics, fluid mechanics, surface science and the physics of eruptions.

“We try to teach students what real experiments are like,” Coffey said. “I thought it would be good for the students to work on an experiment that doesn’t have a known outcome—because that’s what research is.”

Coffey asked her students to find out everything they could about the Diet Coke and Mentos reaction, develop a question about the reaction and design an experiment to answer their question. The students’ only restrictions were to design an experiment that could be accomplished on a tight budget and to use existing equipment at the university.

“We discussed what a real researcher has to do when designing an experiment to answer a question,” Coffey said. Students studied what makes a good experiment, how complications can arise, the need to narrow the number of unknowns in an experiment, and the importance of designing an experiment that tests for one variable at time.

The students measured the volume of liquid displaced and the distance it traveled when a variety of items were added to Diet Coke – including Mentos, Wint-O-Green Lifesavers, rock salt, table salt and sand.

They also studied the surface roughness of the candy and other materials by using a scanning electron microscope and an atomic force microscope.

So why does the reaction occur? In an opened container of soda, carbon dioxide gas bubbles out over the course of minutes or hours until the concentration of carbon dioxide left in the soda is proportional to the carbon dioxide in the surrounding air. This de-fizzing reaction is slow because the surface tension of the liquid is very high, which keeps the gas bubbles trapped.

But when a Mentos is dropped in the beverage, it breaks the surface tension and as it falls the candy’s surfactant coating further reduces the surface tension of the liquid. The candy’s rough surface also provides growth sites for the gas, making it easier for carbonation to escape as a foam geyser.

The geyser also occurs when sand, salt or lifesavers were added to the Diet Coke, but the mass lost and volume traveled is much less spectacular.

Tonya Coffey | newswise
Further information:
http://www.appstate.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>