Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers untangle quantum quirk

12.06.2008
Quantum computing has been hailed as the next leap forward for computers, promising to catapult memory capacity and processing speeds well beyond current limits. Several challenging problems need to be cracked, however, before the dream can be fully realized.

Two Arizona State University researchers, Richard Akis and Regent's Professor David Ferry, both of the electrical engineering department's Nanostructures Research Group, have proposed a solution to one of the most controversial of these conundrums and, in the process, may have taken a significant step toward realizing a quantum computing future. Their solution appeared in a special April 2008 issue of the Journal of Physics: Condensed Matter.

Two basic requirements of any computer are the capacity to store a value (information) and the ability to read that value. Yet even these most basic requirements present cutting-edge challenges to quantum physicists.

Today's computers store data logically as bits—ones and zeroes represented physically as positive or negative charges in a storage medium. Quantum computers, conversely, will store data logically as quantum bits, or "qubits"—an entire range of values represented physically by an electron's angle of spin.

Electrons and other subatomic particles spin like tiny tops, complete with tilt, or "precession." Since there are an infinite number of angles at which an electron can tilt, there are theoretically an infinite number of values that a qubit can store. Practically speaking, however, the number of available values will be constrained by technology and other theoretical limitations of computer science.

Currently, researchers are hard pressed to build even simple quantum computers. The problem is that quantum states are notoriously difficult to pin down and measure. Akis and Ferry's research, combined with that of former ASU colleague Jonathan Bird, could yield insights that help solve these problems.

Bird, now at University of Buffalo, has made important strides toward measuring quantum states using "entanglement," a characteristic of quantum mechanics by which two quantum particles interact at a distance. His measurement technique is based on quantum states produced by electron-electron interactions.

"This is like the 'readout' of a spin," Akis says. "It all has to do with e-e interactions, but from a remote distance."

Bird's method is only useful, however, if it has something to measure and a theory to back it up, but electron-electron interactions are complex and poorly understood. Indeed, simple quantum mechanics models often ignore electron-electron interactions entirely, instead relying on "one-electron approximation" models, which leave a number of questions unanswered.

Akis and Ferry were wrestling with one of the most controversial of these questions when they came up with a model that explained the electron-electron interactions Bird was measuring. They immediately saw the potential.

"Bird's experiment is more than a pretty measurement—there are indications that you could use this in quantum computing applications," Ferry says.

Their findings could also have important implications for quantum data storage. One way to store qubits is via a quantum point contact (QPC)—the quantum equivalent of a computer gate. Generally, the quantum behavior of electrons is represented by a stair-step graph of the conductance of these gates. Usually, the steps are either twice or half of a particular conductance value, and work just fine under a simple one-electron approximation model. Electrons are simply treated like bullets shooting through gates and not interacting with their other electrons.

These models fail to explain at least one odd case, however, which inspired the Journal of Physics: Condensed Matter to dedicate an entire issue to papers addressing it. The case breaks the usual pattern of QPC conductance plateaus, occurring at the 70 percent mark instead of half or twice a particular conductance value.

Akis and Ferry skipped the one-electron approximation and showed that the odd behavior at the 70 percent mark was due to interactions between up- and down-spinning electrons. This explanation means that the oddball conductance plateau can be read using Bird's method and provides an explanation for the electron-electron interactions that the method measures.

"We all use the same basic ideas—everyone agrees that you have to have e-e interactions or some manifestation of that," Akis says. "But the complete explanation is still kind of up in the air. A lot of it is based upon the model you use."

According to Akis and Ferry, electrons passing through QPCs react to them much as water would react to a series of hills and valleys. Electrons of one type of spin find it easier to clear these "hills" than electrons of the opposite spin, which mostly rebound away. Thus sorted, the particles that cleared the hills can be partially confined via a hole in the middle of the gate, resulting in a local spin polarization that can be measured via Bird's entanglement method.

"Bird's experiment is the kind of thing where you say to yourself, 'well, this could start to nail down what's really going on,'" Akis says.

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>