Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful first test of high speed ‘penetrator’

11.06.2008
High speed ‘penetrators’ that could one day be used to breach the surface of planets have successfully passed their first test in the UK, accelerating to 700 miles per hour before striking their target.

A team led by the University College London (UCL) test-fired the projectiles in Wales, recording a peak of 20,000 gee upon impact (where humans can survive up to 10 gee). Penetrators, which can carry data-collecting systems and sensors, are being developed as an alternative to manned space flight for the future exploration of moons in our solar system.

The team, led by Professor Alan Smith from UCL’s Mullard Space Science Laboratory, the University of Surrey, Birkbeck College, Imperial College, the Open University and QinetiQ ran the first three test firings of the high speed penetrators at QinetiQ’s long test track in Pendine, South Wales in May 2008. The projectiles were secured to a rocket sledge and fired along a rail track.

The penetrators, which contained a data- and sample-collecting system, a variety of sensors, accelerometers, a seismometer and a mass spectrometer (for analysis) hit a sand target at around 700 miles per hour. The electronics remained fully operational during impact, recording the deceleration in minute detail which peaked at about 20,000 gee (20,000 times the acceleration due to gravity, where humans can only survive around 10 gee).

Penetrator technology is being developed for future space exploration, to pierce the surface of planetary bodies such as our moon and the icy moons of Jupiter and Saturn. Penetrators offer a low cost approach to planetary exploration, but the enormous impact forces have meant that scientists have so far been reluctant to trust them.

Professor Smith said: “Prior to this trial, we had to rely on computer modelling and analysis. As far as we can tell the trial has been enormously successful, with all aspects of the electronics working correctly during and after the impact. I congratulate the team on this really impressive achievement – to get everything right first time is wonderful, and a tribute to British technology and innovation.”

The impact trial is part of a series of technical developments and studies in preparation for future planetary space missions. These include the proposed UK MoonLITE mission to the Moon which is hoped to be launched in 2013, and possible missions to moons of the outer planets – Europa, Ganymede, Enceladous and Titan. The trials were funded by the Science and Technology Facilities Council as part of MSSL’s Rolling Grant.

Professor Smith leads the UK penetrator consortium which is a grouping of British universities (UCL, University of Surrey, Birkbeck College, Imperial College, Leicester University and Open University) and UK industries (Astrium, QinetiQ and Surrey Satellite Technology Ltd).

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>