Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun goes longer than normal without producing sunspots

10.06.2008
The sun has been laying low for the past couple of years, producing no sunspots and giving a break to satellites.

That's good news for people who scramble when space weather interferes with their technology, but it became a point of discussion for the scientists who attended an international solar conference at Montana State University. Approximately 100 scientists from Europe, Asia, Latin America, Africa and North America gathered June 1-6 to talk about "Solar Variability, Earth's Climate and the Space Environment."

The scientists said periods of inactivity are normal for the sun, but this period has gone on longer than usual.

"It continues to be dead," said Saku Tsuneta with the National Astronomical Observatory of Japan, program manager for the Hinode solar mission. "That's a small concern, a very small concern."

The Hinode satellite is a Japanese mission with the United States and United Kingdom as partners. The satellite carries three telescopes that together show how changes on the sun's surface spread through the solar atmosphere. MSU researchers are among those operating the X-ray telescope. The satellite orbits 431 miles above ground, crossing both poles and making one lap every 95 minutes, giving Hinode an uninterrupted view of the sun for several months out of the year.

Dana Longcope, a solar physicist at MSU, said the sun usually operates on an 11-year cycle with maximum activity occurring in the middle of the cycle. Minimum activity generally occurs as the cycles change. Solar activity refers to phenomena like sunspots, solar flares and solar eruptions. Together, they create the weather than can disrupt satellites in space and technology on earth.

The last cycle reached its peak in 2001 and is believed to be just ending now, Longcope said. The next cycle is just beginning and is expected to reach its peak sometime around 2012. Today's sun, however, is as inactive as it was two years ago, and scientists aren't sure why.

"It's a dead face," Tsuneta said of the sun's appearance.

Tsuneta said solar physicists aren't like weather forecasters; They can't predict the future. They do have the ability to observe, however, and they have observed a longer-than-normal period of solar inactivity. In the past, they observed that the sun once went 50 years without producing sunspots. That period coincided with a little ice age on Earth that lasted from 1650 to 1700.

Tsuneta said he doesn't know how long the sun will continue to be inactive, but scientists associated with the Hinode mission are ready for it to resume maximum activity. They have added extra ground stations to pick up signals from Hinode in case solar activity interferes with instruments at other stations around the world. The new stations, ready to start operating this summer, are located in India, Norway, Alaska and the South Pole.

Establishing those stations, as well as the Hinode mission, required international cooperation, Tsuneta said. No one country had the resources to carry out those projects by itself.

Four countries, three space agencies and 11 organizations worked together on Hinode which was launched in September 2006, Tsuneta said. Among the collaborators was Loren Acton, a research professor of physics at MSU. Tsuneta and Acton worked together closely from 1986-2002 and were reunited at the MSU conference.

"His leadership was immense, superb," Tsuneta said about Acton.

Acton, 72, said he is still enthused by solar physics and the new questions being raised. In fact, he wished he could knock 22 years off his age and extend his career even longer.

"It's too much fun," he said. "There's so much exciting stuff come up, I would like to be part of it."

A related article on the Hinode mission is located at http://www.montana.edu/cpa/news/nwview.php?article=4902

Evelyn Boswell, (406) 994-5135 or evelynb@montana.edu

Evelyn Boswell | EurekAlert!
Further information:
http://www.montana.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>