Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun goes longer than normal without producing sunspots

10.06.2008
The sun has been laying low for the past couple of years, producing no sunspots and giving a break to satellites.

That's good news for people who scramble when space weather interferes with their technology, but it became a point of discussion for the scientists who attended an international solar conference at Montana State University. Approximately 100 scientists from Europe, Asia, Latin America, Africa and North America gathered June 1-6 to talk about "Solar Variability, Earth's Climate and the Space Environment."

The scientists said periods of inactivity are normal for the sun, but this period has gone on longer than usual.

"It continues to be dead," said Saku Tsuneta with the National Astronomical Observatory of Japan, program manager for the Hinode solar mission. "That's a small concern, a very small concern."

The Hinode satellite is a Japanese mission with the United States and United Kingdom as partners. The satellite carries three telescopes that together show how changes on the sun's surface spread through the solar atmosphere. MSU researchers are among those operating the X-ray telescope. The satellite orbits 431 miles above ground, crossing both poles and making one lap every 95 minutes, giving Hinode an uninterrupted view of the sun for several months out of the year.

Dana Longcope, a solar physicist at MSU, said the sun usually operates on an 11-year cycle with maximum activity occurring in the middle of the cycle. Minimum activity generally occurs as the cycles change. Solar activity refers to phenomena like sunspots, solar flares and solar eruptions. Together, they create the weather than can disrupt satellites in space and technology on earth.

The last cycle reached its peak in 2001 and is believed to be just ending now, Longcope said. The next cycle is just beginning and is expected to reach its peak sometime around 2012. Today's sun, however, is as inactive as it was two years ago, and scientists aren't sure why.

"It's a dead face," Tsuneta said of the sun's appearance.

Tsuneta said solar physicists aren't like weather forecasters; They can't predict the future. They do have the ability to observe, however, and they have observed a longer-than-normal period of solar inactivity. In the past, they observed that the sun once went 50 years without producing sunspots. That period coincided with a little ice age on Earth that lasted from 1650 to 1700.

Tsuneta said he doesn't know how long the sun will continue to be inactive, but scientists associated with the Hinode mission are ready for it to resume maximum activity. They have added extra ground stations to pick up signals from Hinode in case solar activity interferes with instruments at other stations around the world. The new stations, ready to start operating this summer, are located in India, Norway, Alaska and the South Pole.

Establishing those stations, as well as the Hinode mission, required international cooperation, Tsuneta said. No one country had the resources to carry out those projects by itself.

Four countries, three space agencies and 11 organizations worked together on Hinode which was launched in September 2006, Tsuneta said. Among the collaborators was Loren Acton, a research professor of physics at MSU. Tsuneta and Acton worked together closely from 1986-2002 and were reunited at the MSU conference.

"His leadership was immense, superb," Tsuneta said about Acton.

Acton, 72, said he is still enthused by solar physics and the new questions being raised. In fact, he wished he could knock 22 years off his age and extend his career even longer.

"It's too much fun," he said. "There's so much exciting stuff come up, I would like to be part of it."

A related article on the Hinode mission is located at http://www.montana.edu/cpa/news/nwview.php?article=4902

Evelyn Boswell, (406) 994-5135 or evelynb@montana.edu

Evelyn Boswell | EurekAlert!
Further information:
http://www.montana.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>