Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun goes longer than normal without producing sunspots

10.06.2008
The sun has been laying low for the past couple of years, producing no sunspots and giving a break to satellites.

That's good news for people who scramble when space weather interferes with their technology, but it became a point of discussion for the scientists who attended an international solar conference at Montana State University. Approximately 100 scientists from Europe, Asia, Latin America, Africa and North America gathered June 1-6 to talk about "Solar Variability, Earth's Climate and the Space Environment."

The scientists said periods of inactivity are normal for the sun, but this period has gone on longer than usual.

"It continues to be dead," said Saku Tsuneta with the National Astronomical Observatory of Japan, program manager for the Hinode solar mission. "That's a small concern, a very small concern."

The Hinode satellite is a Japanese mission with the United States and United Kingdom as partners. The satellite carries three telescopes that together show how changes on the sun's surface spread through the solar atmosphere. MSU researchers are among those operating the X-ray telescope. The satellite orbits 431 miles above ground, crossing both poles and making one lap every 95 minutes, giving Hinode an uninterrupted view of the sun for several months out of the year.

Dana Longcope, a solar physicist at MSU, said the sun usually operates on an 11-year cycle with maximum activity occurring in the middle of the cycle. Minimum activity generally occurs as the cycles change. Solar activity refers to phenomena like sunspots, solar flares and solar eruptions. Together, they create the weather than can disrupt satellites in space and technology on earth.

The last cycle reached its peak in 2001 and is believed to be just ending now, Longcope said. The next cycle is just beginning and is expected to reach its peak sometime around 2012. Today's sun, however, is as inactive as it was two years ago, and scientists aren't sure why.

"It's a dead face," Tsuneta said of the sun's appearance.

Tsuneta said solar physicists aren't like weather forecasters; They can't predict the future. They do have the ability to observe, however, and they have observed a longer-than-normal period of solar inactivity. In the past, they observed that the sun once went 50 years without producing sunspots. That period coincided with a little ice age on Earth that lasted from 1650 to 1700.

Tsuneta said he doesn't know how long the sun will continue to be inactive, but scientists associated with the Hinode mission are ready for it to resume maximum activity. They have added extra ground stations to pick up signals from Hinode in case solar activity interferes with instruments at other stations around the world. The new stations, ready to start operating this summer, are located in India, Norway, Alaska and the South Pole.

Establishing those stations, as well as the Hinode mission, required international cooperation, Tsuneta said. No one country had the resources to carry out those projects by itself.

Four countries, three space agencies and 11 organizations worked together on Hinode which was launched in September 2006, Tsuneta said. Among the collaborators was Loren Acton, a research professor of physics at MSU. Tsuneta and Acton worked together closely from 1986-2002 and were reunited at the MSU conference.

"His leadership was immense, superb," Tsuneta said about Acton.

Acton, 72, said he is still enthused by solar physics and the new questions being raised. In fact, he wished he could knock 22 years off his age and extend his career even longer.

"It's too much fun," he said. "There's so much exciting stuff come up, I would like to be part of it."

A related article on the Hinode mission is located at http://www.montana.edu/cpa/news/nwview.php?article=4902

Evelyn Boswell, (406) 994-5135 or evelynb@montana.edu

Evelyn Boswell | EurekAlert!
Further information:
http://www.montana.edu

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>