Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grains And Liquids Demonstrate Similar Cohesion Effects

09.06.2008
What if sand flowed like water? Researchers at Centre de Physique Moléculaire Optique et Hertzienne (1) (CNRS/ Université Bordeaux 1) have just demonstrated that even without an attractive force between grains in flowing sand, they have a cohesion similar to that of liquids. These results were published May 30, 2008, in the journal Physical Review Letters.

How do grains flow out of an emptying silo? And what about sugar poured out by a pastry chef? Like liquids (2), grains can flow, but there is no attraction between the grains to trigger cohesion. However, by studying the waves that form and propagate on the surface of flowing sand, the physicists have observed telltale signs of cohesion.

Like the very small ripples that form on the surface of water, these waves point to the existence of a “taut elastic skin” on the surface of volumes of grain.This “skin” on flowing grain is its surface tension.

By measuring wave propagation speed, the researchers have shown that this cohesion effect is a result of a decrease in air pressure between flowing grains. Therefore, when a mass of grains flows, there is a depressed area at the middle of the flow, which pulls straying grains back towards the mass. These results should improve our understanding of the details of what happens in grain flows –materials which are common, but not yet well understood.

(1) CPMOH

(2) The surface of a liquid is similar to an elastic membrane under
tension, which causes, for example, the pressure on the interior of soap
bubbles. This “surface tension” is due to cohesion forces between
molecules in the liquid.

Julien Guillaume | alfa
Further information:
http://www.cnrs-dir.fr
http://www2.cnrs.fr/presse/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>