Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Phoenix Mars Lander Checking Soil Properties

09.06.2008
The arm of NASA's Phoenix Mars Lander released a handful of clumpy Martian soil onto a screened opening of a laboratory instrument on the spacecraft Friday, but the instrument did not confirm that any of the sample passed through the screen.

Engineers and scientists on the Phoenix team assembled at the University of Arizona are determining the best approach to get some of that material into the instrument. Meanwhile, the team has developed commands for the spacecraft to use cameras and the Robotic Arm on Saturday to study how strongly the soil from the top layer of the surface clings together into clumps.

Images taken Friday show soil resting on the screen over an open sample-delivery door of Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, an instrument for identifying some key ingredients. The screen is designed to let through particles up to one-millimeter (0.04 inch) across while keeping out larger particles, in order to prevent clogging a funnel pathway to a tiny oven inside.

An infrared beam crossing the pathway checks whether particles are entering the instrument and breaking the beam.

The researchers have not yet determined why none of the sample appears to have gotten past the screen, but they have begun proposing possibilities.

"I think it's the cloddiness of the soil and not having enough fine granular material," said Ray Arvidson of Washington University in St. Louis, the Phoenix team's science lead for Saturday and digging czar for the mission.

"In the future, we may prepare the soil by pushing down on the surface with the arm before scooping up the material to break it up, then sprinkle a smaller amount over the door," he said.

Another strategy under consideration is to use mechanical shakers inside the TEGA instrument differently than the five minutes of shaking that was part of the sample-receiving process on Friday. No activities for the instrument are planned for Saturday, while the team refines plans for diagnostic tests.

Phoenix's planned activities for Saturday include horizontally extending a trench where the lander dug two practice scoops earlier this week, and taking additional images of a small pile of soil that was scooped up and dropped onto the surface during the second of those practice digs.

"We are hoping to learn more about the soil's physical properties at this site,"
Arvidson said. "It may be more cohesive than what we have seen at earlier Mars landing sites."

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

WEBLINKS:
Phoenix Mars Mission, UA - http://phoenix.lpl.arizona.edu Phoenix Mars Mission, NASA - http://www.nasa.gov/phoenix
MEDIA CONTACTS:
Guy Webster, Jet Propulsion Laboratory
(818-354-5011; guy.webster@jpl.nasa.gov) Sara Hammond, University of Arizona (520-626-1974; shammond@lpl.arizona.edu) Dwayne Brown, NASA Headquarters (202-358-1726; dwayne.c.brown@nasa.gov)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://www.nasa.gov/phoenix
http://phoenix.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>