Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Scientists Pioneer Method for Making Giant Lunar Telescopes

06.06.2008
Scientists working at NASA’s Goddard Space Flight Center in Greenbelt, Md., have concocted an innovative recipe for giant telescope mirrors on the Moon. To make a mirror that dwarfs anything on Earth, just take a little bit of carbon, throw in some epoxy, and add lots of lunar dust.

"We could make huge telescopes on the moon relatively easily, and avoid the large expense of transporting a large mirror from Earth," says Peter Chen of NASA Goddard and the Catholic University of America, which is located in Washington, D.C. "Since most of the materials are already there in the form of dust, you don’t have to bring very much stuff with you, and that saves a ton of money."

Chen and his Goddard colleagues Douglas Rabin, Michael Van Steenberg, and Ron Oliversen are presenting their mirror-making technique in a poster at the 212th meeting of the American Astronomical Society in St. Louis, Mo. They will also describe their results in a press conference on Wednesday, June 4 at 9:30 a.m. CDT.

For years, Chen had been working with carbon-fiber composite materials to produce high-quality telescope mirrors. But Chen and his colleagues decided to try an experiment. They substituted carbon nanotubes (tiny tubular structures made of pure carbon) for the carbon-fiber composites. When they mixed small amounts of carbon nanotubes and epoxies (glue-like materials) with crushed rock that has the same composition and grain size as lunar dust, they discovered to their surprise that they had created a very strong material with the consistency of concrete. This material can be used instead of glass to make mirrors.

They next applied additional layers of epoxy and spun the material at room temperature. The result was a 12-inch-wide mirror blank with the parabolic shape of a telescope mirror. All of this was achieved with minimal effort and cost.

"After that, all we needed to do was coat the mirror blank with a small amount of aluminum, and voilà, we had a highly reflective telescope mirror," says Rabin. "Our method could be scaled-up on the moon, using the ubiquitous lunar dust, to create giant telescope mirrors up to 50 meters in diameter." Such an observatory would dwarf the largest optical telescope in the world right now: the 10.4-meter Gran Telescopio Canarias in the Canary Islands.

The capabilities of a 50-meter telescope on the Moon boggle the imagination, according to NASA. With a stable platform, and no atmosphere to absorb or blur starlight, the monster scope could record the spectra of extra solar terrestrial planets and detect atmospheric biomarkers such as ozone and methane. Two or more such telescopes spanning the surface of the Moon can work together to take direct images of Earth-like planets around nearby stars and look for brightness variations that come from oceans and continents. Among many other projects, it could make detailed observations of galaxies at various distances, to see how the universe evolved.

"Constructing giant telescopes provides a strong rationale for doing astronomy from the moon," says Chen. "We could also use this on-site composite material to build habitats for the astronauts, and mirrors to collect sunlight for solar-power farms."

Chen notes that his group achieved this breakthrough with only the support of small NASA internal seed funds. The carbon nanotubes were contributed by Dan Powell, Lead Nanotechnologist for NASA Goddard. Several amateur astronomers made key contributions by advising and making special epoxy formulations, helping with polishing experiments, and vacuum coating the 12-inch mirror.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>